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Exercice 1. Support Vector Classifier

Consider a dataset of N pairs (z;, y;) where each z; is a vector of dimension d
and y; is a binary class, i.e. y; € {—1,1}. We would like to separate the two
classes of samples with a separating hyper-surface of equation f(z;)+b =
0 such that f(z;)+b < 0if x; belongs to the class y; = —1 and f(x;)+b > 0 if
y; = 1. To achieve this, we consider functions f that belong to a Reproducing
Kernel Hilbert Space H of kernel k. Such choice allows to represent highly
non-linear hyper-surfaces while still solving a convex problem of the form:
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1. Without providing the details of the calculations:
(a) Provide an expression for the Lagrangian of the problems in eq. ()
in terms of N dual parameters o; > 0 corresponding the margin in-
equalities and N dual parameters p; > 0 corresponding to the positiv-
ity constraints on & whenever applicable.
(b) Using the optimality condition on the Lagrangian, express the dual
problem as a constrained minimization over (ai)ie{l ~ny and ex-
press f(x) in terms of «; and relevant quantities.
(c) Using Strong duality (KKT conditions), find a condition char-
acterizing the support vector points z; that are on the margin of
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the separating hyper-surface, i.e. the points satisfying the equation
yi( f(z:) +b) = 1.

2. (a) In the notebook, implement the method kernel of the classes RBF
and Linear, which takes as input two data matrices X and Y of size
N x d and M x d and returns a gramm matrix G of shape N x M
whose components are k(z;,y;) = exp(—||z; — v;||*/(20?)) for RBF and
k(x;,y;) = x]y; for the linear kernel. (The fastest solution does not
use any for loop!)

In the notebook, the class KernelSVC corresponds to eq. (II):

(b) Implement the method fit that computes the optimal dual pa-
rameters «;, the parameter b and the support vectors.

(c) Implement the method separating_function that takes a matrix
of shape N'xd and returns a vector of size N’ of evaluations of f.

(d) Report the outputs for each code block that performs a classifica-
tion.

Exercice 2. Kernel Support Vector Regression
Given a dataset of N pairs (x;,y;), where x; is a vector of dimension d
and y; is a scalar and an RKHS H of kernel £, the Kernel Support Vector
Regression (Kernel SVR) finds a regression function f € H and scalar b such
that f(x;) + b — y; are within and tube of size n > 0 with some tolerance.
More precisely, the Kernel SVR solves the problem:
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1. Without providing the details of the calculations:
(a) Provide an expression for the Lagrangian of the problems in eq. (2)
in terms of:
- 2N dual parameters (o )1<i<y > 0 and (a; )1<;<y > 0 corresponding
the tube inequalities y; — f(z;) —b < n+&" and —y; + f(z;) +0 < n+&



- N dual parameters p; and p; corresponding to the positivity con-
straints on & and &; .

(b) Using the optimality condition on the Lagrangian, express the
dual problem as a constrained minimization over (a;_>ie{l,...,N} and
(a; )1<i<n, then provide an expression for f(z) in terms of (a; )1<i<n,
(e )1<i<n and relevant quantities.

(c) Using Strong duality, find a condition characterizing the support
vector points x; that are on the boundary of the tube, i.e. the points
satisfying the equation y; — f(z;) —b=nor —y; + f(x;) +b=n.

. In the notebook, the class KernelSVR corresponds to eq. (2)):

(a) Implement the method fit that computes the optimal dual pa-
rameters o, o, the parameter, b and the support vectors.

(b) Implement the method regression_function that takes a matrix
of shape M xd and returns a vector of size M of evaluations of f.

(c) Report the output of the code block that performs the regression.



