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Exercice 1. Support Vector Classifier
Consider a dataset of N pairs (xi, yi) where each xi is a vector of dimension d
and yi is a binary class, i.e. yi ∈ {−1, 1}. We would like to separate the two
classes of samples with a separating hyper-surface of equation f(xi)+b =
0 such that f(xi)+b ≤ 0 if xi belongs to the class yi = −1 and f(xi)+b ≥ 0 if
yi = 1. To achieve this, we consider functions f that belong to a Reproducing
Kernel Hilbert Space H of kernel k. Such choice allows to represent highly
non-linear hyper-surfaces while still solving a convex problem of the form:

min
f,b,ξi

1

2
‖f‖2 + C

n∑

i=1

ξi

s.t. yi(f(xi) + b) ≥ 1− ξi

ξi ≥ 0

(1)

1. Without providing the details of the calculations:
(a) Provide an expression for the Lagrangian of the problems in eq. (1)
in terms of N dual parameters αi ≥ 0 corresponding the margin in-
equalities and N dual parameters µi ≥ 0 corresponding to the positiv-
ity constraints on ξi whenever applicable.
(b) Using the optimality condition on the Lagrangian, express the dual
problem as a constrained minimization over (αi)i∈{1,...,N} and ex-
press f(x) in terms of αi and relevant quantities.
(c) Using Strong duality (KKT conditions), find a condition char-
acterizing the support vector points xi that are on the margin of
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the separating hyper-surface, i.e. the points satisfying the equation
yi(f(xi) + b) = 1.

2. (a) In the notebook, implement the method kernel of the classes RBF
and Linear, which takes as input two data matrices X and Y of size
N × d and M × d and returns a gramm matrix G of shape N × M
whose components are k(xi, yj) = exp(−‖xi− yi‖

2/(2σ2)) for RBF and
k(xi, yj) = x⊤

i yj for the linear kernel. (The fastest solution does not
use any for loop!)
In the notebook, the class KernelSVC corresponds to eq. (1):
(b) Implement the method fit that computes the optimal dual pa-
rameters αi, the parameter b and the support vectors.
(c) Implement the method separating_function that takes a matrix
of shape N ′×d and returns a vector of size N ′ of evaluations of f .
(d) Report the outputs for each code block that performs a classifica-
tion.

Exercice 2. Kernel Support Vector Regression
Given a dataset of N pairs (xi, yi), where xi is a vector of dimension d
and yi is a scalar and an RKHS H of kernel k, the Kernel Support Vector
Regression (Kernel SVR) finds a regression function f ∈ H and scalar b such
that f(xi) + b − yi are within and tube of size η > 0 with some tolerance.
More precisely, the Kernel SVR solves the problem:

min
f,b,ξ+,ξ−

1

2
‖f‖2 + C

N∑

i=1

ξ+i + ξ−i

s.t. yi − f(xi)− b ≤ η + ξ+i
− yi + f(xi) + b ≤ η + ξ−i
ξ+i , ξ

−
i ≥ 0

(2)

1. Without providing the details of the calculations:
(a) Provide an expression for the Lagrangian of the problems in eq. (2)
in terms of:
- 2N dual parameters (α+

i )1≤i≤N ≥ 0 and (α−
i )1≤i≤N ≥ 0 corresponding

the tube inequalities yi−f(xi)−b ≤ η+ξ+i and −yi+f(xi)+b ≤ η+ξ−i
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- N dual parameters µ+

i and µ−
i corresponding to the positivity con-

straints on ξ+i and ξ−i .
(b) Using the optimality condition on the Lagrangian, express the
dual problem as a constrained minimization over (α+

i )i∈{1,...,N} and
(α−

i )1≤i≤N , then provide an expression for f(x) in terms of (α+

i )1≤i≤N ,
(α−

i )1≤i≤N and relevant quantities.
(c) Using Strong duality, find a condition characterizing the support
vector points xi that are on the boundary of the tube, i.e. the points
satisfying the equation yi − f(xi)− b = η or −yi + f(xi) + b = η.

2. In the notebook, the class KernelSVR corresponds to eq. (2):
(a) Implement the method fit that computes the optimal dual pa-
rameters α+

i , α
−
i , the parameter, b and the support vectors.

(b) Implement the method regression_function that takes a matrix
of shape M×d and returns a vector of size M of evaluations of f .
(c) Report the output of the code block that performs the regression.
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