"Kernel methods in machine learning" Homework 3 Due on February 23, 2022, 3pm

Michael Arbel, Julien Mairal, and Jean-Philippe Vert

Exercice 1. Support Vector Classifier

Consider a dataset of N pairs (x_i, y_i) where each x_i is a vector of dimension d and y_i is a binary class, i.e. $y_i \in \{-1, 1\}$. We would like to separate the two classes of samples with a **separating hyper-surface** of equation $f(x_i) + b =$ 0 such that $f(x_i) + b \leq 0$ if x_i belongs to the class $y_i = -1$ and $f(x_i) + b \geq 0$ if $y_i = 1$. To achieve this, we consider functions f that belong to a Reproducing Kernel Hilbert Space \mathcal{H} of kernel k. Such choice allows to represent highly non-linear hyper-surfaces while still solving a convex problem of the form:

$$\min_{\substack{f,b,\xi_i \\ s.t.}} \frac{1}{2} \|f\|^2 + C \sum_{i=1}^n \xi_i \\
\text{s.t.} \quad y_i(f(x_i) + b) \ge 1 - \xi_i \\
\quad \xi_i \ge 0$$
(1)

1. Without providing the details of the calculations:

(a) Provide an expression for the Lagrangian of the problems in eq. (1) in terms of N dual parameters $\alpha_i \geq 0$ corresponding the margin inequalities and N dual parameters $\mu_i \geq 0$ corresponding to the positivity constraints on ξ_i whenever applicable.

(b) Using the optimality condition on the Lagrangian, express the dual problem as a constrained minimization over $(\alpha_i)_{i \in \{1,...,N\}}$ and express f(x) in terms of α_i and relevant quantities.

(c) Using Strong duality (KKT conditions), find a condition characterizing the support vector points x_i that are on the margin of the separating hyper-surface, i.e. the points satisfying the equation $y_i(f(x_i) + b) = 1$.

2. (a) In the notebook, implement the method **kernel** of the classes RBF and Linear, which takes as input two data matrices X and Y of size $N \times d$ and $M \times d$ and returns a gramm matrix G of shape $N \times M$ whose components are $k(x_i, y_j) = \exp(-||x_i - y_i||^2/(2\sigma^2))$ for RBF and $k(x_i, y_j) = x_i^{\top} y_j$ for the linear kernel. (The fastest solution does not use any for loop!)

In the notebook, the class KernelSVC corresponds to eq. (1):

(b) Implement the method fit that computes the optimal dual parameters α_i , the parameter b and the support vectors.

(c) Implement the method separating_function that takes a matrix of shape $N' \times d$ and returns a vector of size N' of evaluations of f.

(d) Report the outputs for each code block that performs a classification.

Exercice 2. Kernel Support Vector Regression

Given a dataset of N pairs (x_i, y_i) , where x_i is a vector of dimension dand y_i is a scalar and an RKHS \mathcal{H} of kernel k, the Kernel Support Vector Regression (Kernel SVR) finds a regression function $f \in \mathcal{H}$ and scalar b such that $f(x_i) + b - y_i$ are within and tube of size $\eta > 0$ with some tolerance. More precisely, the Kernel SVR solves the problem:

$$\min_{\substack{f,b,\xi^+,\xi^-\\ \text{s.t.}}} \frac{1}{2} \|f\|^2 + C \sum_{i=1}^N \xi_i^+ + \xi_i^- \\
\text{s.t.} \quad y_i - f(x_i) - b \le \eta + \xi_i^+ \\
- y_i + f(x_i) + b \le \eta + \xi_i^- \\
\xi_i^+, \xi_i^- \ge 0$$
(2)

1. Without providing the details of the calculations:

(a) Provide an expression for the Lagrangian of the problems in eq. (2) in terms of:

- 2N dual parameters $(\alpha_i^+)_{1 \le i \le N} \ge 0$ and $(\alpha_i^-)_{1 \le i \le N} \ge 0$ corresponding the tube inequalities $y_i - f(x_i) - b \le \eta + \xi_i^+$ and $-y_i + f(x_i) + b \le \eta + \xi_i^-$

- N dual parameters μ_i^+ and μ_i^- corresponding to the positivity constraints on ξ_i^+ and ξ_i^- .

(b) Using the optimality condition on the Lagrangian, express the dual problem as a **constrained minimization** over $(\alpha_i^+)_{i \in \{1,...,N\}}$ and $(\alpha_i^-)_{1 \leq i \leq N}$, then provide an expression for f(x) in terms of $(\alpha_i^+)_{1 \leq i \leq N}$, $(\alpha_i^-)_{1 \leq i \leq N}$ and relevant quantities.

(c) Using Strong duality, find a condition characterizing the **support** vector points x_i that are on the boundary of the tube, i.e. the points satisfying the equation $y_i - f(x_i) - b = \eta$ or $-y_i + f(x_i) + b = \eta$.

2. In the notebook, the class KernelSVR corresponds to eq. (2):

(a) Implement the method fit that computes the optimal dual parameters α_i^+, α_i^- , the parameter, b and the support vectors.

(b) Implement the method regression_function that takes a matrix of shape $M \times d$ and returns a vector of size M of evaluations of f.

(c) Report the output of the code block that performs the regression.