
MVA ”Kernel methods in machine learning”

Exercices

Michael Arbel, Julien Mairal, and Jean-Philippe Vert

Exercice 1. Kernels
Study whether the following kernels are positive definite:

1. X = (−1, 1), K (x, x′) = 1
1−xx′

2. X = N, K (x, x′) = 2x+x′

3. X = N, K (x, x′) = 2xx
′

4. X = R+, K (x, x′) = log (1 + xx′)

5. X = R, K (x, x′) = exp (−|x− x′|2)

6. X = R, K (x, x′) = cos (x+ x′)

7. X = R, K (x, x′) = cos (x− x′)

8. X = R+, K (x, x′) = min(x, x′)

9. X = R+, K (x, x′) = max(x, x′)

10. X = R+, K (x, x′) = min(x, x′)/max(x, x′)

11. X = N, K (x, x′) = GCD (x, x′)

12. X = N, K (x, x′) = LCM (x, x′)

13. X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

14. Given a probability space (Ω,A, P ), on X = A:

∀A,B ∈ A , K (A,B) = P (A ∩B)− P (A)P (B) .
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15. Let X be a set and f, g : X → R+ two non-negative functions:

∀x, y ∈ X K(x, y) = min(f(x)g(y), f(y)g(x))

16. Given a non-empty finite set E, on X = P(E) = {A : A ⊂ E}:

∀A,B ⊂ E , K (A,B) =
|A ∩B |
|A ∪B | ,

where |F | denotes the cardinality of F , and with the convention 0
0
= 0.

Exercice 2. Function and kernel boundedness
Consider a p.d. kernel K : X ×X → R such that K(x, z) ≤ b2 for all x, z in
X . Show that ‖f‖∞ = supx∈X |f(x)| ≤ b for any function f in the unit ball
of the corresponding RKHS.

Exercice 3. Non-expansiveness of the Gaussian kernel
Consider the Gaussian kernel K : Rp × Rp → R such that for all pair of
points x, x′ in Rp,

K(x, x′) = e−
α
2
‖x−x′‖2 ,

where ‖.‖ is the Euclidean norm on Rp. Call H the RKHS of K and consider
its RKHS mapping ϕ : Rp → H such that K(x, x′) = 〈ϕ(x), ϕ(x′)〉H for all
x, x′ in Rp. Show that

‖ϕ(x)− ϕ(x′)‖H ≤
√
α‖x− x′‖.

The mapping is called non-expansive whenever α ≤ 1.

Exercice 4. Kernels encoding equivalence classes.
Consider a similarity measure K : X × X → {0, 1} with K(x, x) = 1 for all
x in X . Prove that K is p.d. if and only if, for all x, x′, x′′ in X ,

• K(x, x′) = 1 ⇔ K(x′, x) = 1, and

• K(x, x′) = K(x′, x′′) = 1 ⇒ K(x, x′′) = 1.
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Exercice 5. RKHS

1. Let K1 and K2 be two positive definite kernels on a set X , and α, β
two positive scalars. Show that αK1 + βK2 is positive definite, and
describe its RKHS.

2. Let X be a set and F be a Hilbert space. Let Ψ : X → F , and
K : X × X → R be:

∀x, x′ ∈ X , K(x, x′) = 〈Ψ(x),Ψ(x′)〉F .

Show that K is a positive definite kernel on X , and describe its RKHS.

3. Prove that for any p.d. kernel K on a space X , a function f : X → R

belongs to the RKHS H with kernel K if and only if there exists λ > 0
such that K(x,x′)− λf(x)f(x′) is p.d.

Exercice 6. Completeness of the RKHS
We want to finish the construction of the RKHS associated to a positive
definite kernel K given in the course. Remember we have defined the set of
functions:

H0 =

{

n
∑

i=1

αiKxi
: n ∈ N, α1, . . . , αn ∈ R, x1, . . . , xn ∈ X

}

and for any two functions f, g ∈ H0, given by:

f =
m
∑

i=1

aiKxi
, g =

n
∑

j=1

bjKyj
,

we have defined the operation:

〈f, g〉H0
:=
∑

i,j

aibjK (xi,yj) .

In the course we have shown that H0 endowed with this inner product is a
pre-Hilbert space. Let us now show how to finish the construction of the
RKHS from H0
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1. Show that any Cauchy sequence (fn) in H0 converges pointwisely to a
function f : X → R defined by f(x) = limn→+∞ fn(x).

2. Show that any Cauchy sequence (fn)n∈N in H0 which converges point-
wise to 0 satisfies:

lim
n→+∞

‖ fn ‖H0
= 0 .

3. Let H ⊂ RX be the set of functions f : X → R which are pointwise
limits of Cauchy sequences in H0, i.e., if (fn) is a Cauchy sequence in
H0, then f(x) = limn→+∞ fn(x). Show that H0 ⊂ H.

4. If (fn) and (gn) are two Cauchy sequences in H0, which converge point-
wisely to two functions f and g ∈ H, show that the inner product
〈fn, gn〉H0

converges to a number which only depends on f and g. This
allows us to define formally the operation:

〈f, g〉H = lim
n→+∞

〈fn, gn〉H0
.

5. Show that 〈., .〉H is an inner product on H.

6. Show that H0 is dense in H (with respect to the metric defined by the
inner product 〈., .〉H)

7. Show that H is complete.

8. Show that H is a RKHS whose reproducing kernel is K.

Exercice 7. Uniqueness of the RKHS
Prove that if K : X × X is a positive definite function, then it is the r.k. of
a unique RKHS. (Hint: consider the linear space spanned by the functions
Kx : t 7→ K(x, t), and use the fact that a linear subspace F of a Hilbert space
H is dense in H if and only 0 is the only vector orthgonal to all vectors in
F)

Exercice 8. Conditionally positive definite kernels
Let X be a set. A function k : X × X → R is called conditionally positive
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definite (c.p.d.) if and only if it is symmetric and satisfies:

n
∑

i,j=1

aiajk(xi, xj) ≥ 0

for any n ∈ N, x1, x2, . . . , xn ∈ X n and a1, a2, . . . , an ∈ Rn with
∑n

i=1 ai = 0
.

1. Show that a positive definite (p.d.) function is c.p.d.

2. Is a constant function p.d.? Is it c.p.d.?

3. If X is a Hilbert space, then is k(x, y) = −||x− y||2 p.d.? Is it c.p.d.?

4. Let X be a nonempty set, and x0 ∈ X a point. For any function
k : X × X → R, let k̃ : X × X → R be the function defined by:

k̃(x, y) = k(x, y)− k(x0, x)− k(x0, y) + k(x0, x0).

Show that k is c.p.d. if and only if k̃ is p.d.

5. Let k be a c.p.d. kernel on X such that k(x, x) = 0 for any x ∈ X .
Show that there exists a Hilbert space H and a mapping Φ : X → H
such that, for any x, y ∈ X ,

k(x, y) = −||Φ(x)− Φ(y)||2.

6. Show that if k is c.p.d., then the function exp(tk(x, y)) is p.d. for all
t ≥ 0

7. Conversely, show that if the function exp(tk(x, y)) is p.d. for any t ≥ 0,
then k is c.p.d.

8. Show that the negative shortest-path distance on a tree1 is c.p.d over
the set of vertices (a tree is an undirected graph without loops). Is the
negative shortest-path distance over graphs c.p.d. in general?

1I.e., the function k(x, y) = −d(x, y), where d(x, y) is the shortest-path distance be-
tween x and y, that is, the minimum number of edges of any path that connects x to
y.
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Exercice 9. COCO
Given two sets of real numbers X = (x1, . . . , xn) ∈ Rn and Y = (y1, . . . , yn) ∈
Rn, the covariance between X and Y is defined as

covn(X, Y ) = En(XY )−En(X)En(Y ) ,

where En(U) = (
∑n

i=1 ui)/n. The covariance is useful to detect linear rela-
tionships between X and Y . In order to extend this measure to potential
nonlinear relationships between X and Y , we consider the following criterion:

CK
n (X, Y ) = max

f,g∈BK

covn(f(X), g(Y )) ,

where K is a positive definite kernel on R, BK is the unit ball of the RKHS
of K, and f(U) = (f(u1), . . . , f(un)) for a vector U = (u1, . . . , un).

1. Express simply CK
n (X, Y ) for the linear kernel K(a, b) = ab.

2. For a general kernel K, express CK
n (X, Y ) in terms of the Gram matri-

ces of X and Y .

Exercice 10. RKHS-induced semi-metrics
Let H be a RKHS of functions with domain X , associated to a measurable
p.d. kernel K : X × X → R. Consider two probability distributions P and
Q on X . Show that

sup
‖f‖H≤1

|EP[f(X)]− EQ[f(Z)]|2 = E[K(X,X ′) +K(Z,Z ′)− 2K(X,Z)],

where X,X ′ ∼ P, and Z,Z ′ ∼ Q are jointly independent.

Exercice 11. Kernel PCA for data denoising
Let X be a space endowed with a p.d. kernel K, and Φ : X → H a mapping
to a Hilbert space H such that for all x, x′ ∈ X ,

〈Φ(x),Φ(x′)〉 = K(x, x′) .

Let S = {x1, . . . , xn} be a set of points in X , and

m =
1

n

n
∑

i=1

Φ(xi)

their barycenter in the feature space.
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1. For x ∈ X , let
Ψ(x) = Pd (Φ(x)−m) +m

where Pd is the projection onto the linear span of the first d kernel
principal components of S. Show that Ψ(x) can be expressed as

Ψ(x) =

n
∑

i=1

γiΦ(xi) ,

for some γi to be explicitly computed.

2. For y ∈ X , express

f(y) = ‖Φ(y)−Ψ(x) ‖2

in terms of kernel evaluations. Explain why minimizing f(y) can be
thought of as a method to ”denoise” x.

3. Express f and ∇f in the case X = Rp and K(x, x′) = exp
(

−‖ x−x′ ‖2

2σ2

)

.

Propose an iterative algorithm (for example gradient descent) to find
a local minimum of f in that case.

4. Download the USPS ZIP code data from
http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html Vi-
sualize (a subset of) the dataset in two dimensions with kernel PCA,
for different kernels. Implement the procedure discussed in question 4,
and test it on some data that you have corrupted with noise. Compute
how similar the denoised images are from the original (uncorrupted)
images as a function of the number of principal components used.

Exercice 12. Kernel k-means
In order to cluster a set of vectors x1, . . . , xn ∈ Rp into K groups, we consider
the minimization of:

C(z, µ) =
n
∑

i=1

‖ xi − µzi ‖2

over the cluster assignment variable zi (taking values in 1, . . . , K for all i =
1, . . . , n) and over the cluster means µi ∈ Rp, i = 1, . . . , K.
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1. Starting from an initial assignment z0, we can try to minimize C(z, µ)
by iterating:

µi = argmin
µ

C(zi, µ) , zi+1 = argmin
z

C(z, µi) .

Explicit how both minimization can be carried out (note: this method
is called k-means).

2. Propose a similar iterative algorithm to perform k-means in the RKHS
H of a p.d. kernel K over Rp, i.e., to minimize:

CK(z, µ) =

n
∑

i=1

‖Φ(xi)− µzi ‖2 ,

where Φ : Rp → H satisfies Φ(x)⊤Φ(x′) = K(x, x′).

3. Let Z be the n × K assignment matrix with values Zij = 1 if xi is
assigned to cluster j, 0 otherwise. Let Nj =

∑n
i=1 Zij be the number of

points assigned to cluster j, and L be the K ×K diagonal matrix with
entries Lii = 1/Ni. Show that minimizing CK(z, µ) is equivalent to
maximizing over the assignment matrix Z the trace of L1/2Z⊤KZL1/2.

4. Let H = ZL1/2. What can we say about H⊤H? Do you see a connec-
tion between kernel k-means and kernel PCA? Propose an algorithm
to estimate Z from the solution of kernel PCA.

5. Implement the two variants of kernel k-means (Questions 2 and 4).
Test them with different kernels (linear, Gaussian) on the Libras Move-
ment Data Set2 (n = 360, p = 90, K = 15). Visualize the data mapped
to the first two principal components for different kernels, and check
how well clustering recovers the 15 classes. (note: only use the first 90
attributes for clustering, the 91st one is the class label).

Exercice 13. Kernel LDA
Fisher’s linear discriminant analysis (LDA) is a method for supervised bi-
nary classification of finite-dimensional vectors. Given two sets of points

2http://archive.ics.uci.edu/ml/datasets/Libras+Movement
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S1 =
{

x11, . . . , x
1
n1

}

and S2 =
{

x21, . . . , x
2
n2

}

in Rp, let us denote by mi =
1
ni

∑li
j=1 x

i
j , and by:

SB = (m1 −m2)(m1 −m2)
⊤ , (1)

SW =
∑

i=1,2

∑

x∈Si

(x−mi)(x−mi)
⊤ , (2)

the between and within class scatter matrices, respectively. LDA constructs
the function

fw(x) = w⊤x ,

where w is the vector which maximizes

J(w) =
w⊤SBw

w⊤SWw
.

1. Why does it make sense to maximize J(w)? What do we expect to
find? (you can take as example the case where the two sets S1 and S2

form two clusters, e.g., two Gaussians).

2. We want to extend LDA to the feature space H induced by a positive
definite kernel K by the relations K(x, x′) =< Φ(x),Φ(x′) >H . For a
vector w ∈ H that is a linear combination of the form

w =
∑

i=1,2

ni
∑

j=1

αi
jΦ(x

i
j) ,

express J(w) and fw(x) as a function of α and K.

Exercice 14. Rademacher complexity
A Rademacher variable is a random variables σ that can take two possible
values, −1 and +1, with equal probability 1/2.

1. Let (u1, u2, . . . , uN) be N vectors in a Hilbert space endowed with
an inner product < ., . >, and let σ1, σ2, . . . , σN be N independent
Rademacher variables. Show that:

E

(

N
∑

i=1

N
∑

j=1

σiσj < ui, uj >

)

=

N
∑

i=1

‖ ui ‖2 .
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2. Let K be a positive definite kernel on a space X , HK denote the associ-
ated reproducing kernel Hilbert space, andBR = {f ∈ HK , ‖ f ‖HK

≤ R}.
Let a set of points S = (x1,x2, . . . ,xN) with xi ∈ X (i = 1, . . . , N),
and let σ1, σ2, . . . , σN be N independent Rademacher variables. Show
that:

E sup
f∈BR

∣

∣

∣

∣

∣

N
∑

i=1

σif (xi)

∣

∣

∣

∣

∣

≤ R

√

√

√

√

N
∑

i=1

K (xi,xi) .

Exercice 15. Some upper bounds for learning theory
Let K be a positive definite kernel on a measurable set X , (HK , ‖ . ‖HK

)
denote the corresponding reproducing kernel Hilbert space, λ > 0, and ϕ :
R → R a function. We assume that:

κ = sup
x∈X

K (x,x) < +∞ ,

and we note BR = {f ∈ HK , ‖ f ‖HK
≤ R}. Let us define, for all f ∈ H and

x ∈ X ,
Rϕ(f,x) = ϕ (f (x)) + λ‖ f ‖2HK

.

1. ϕ is said to be Lipschitz if there exists a constant L > 0 such that,
for all u, v ∈ R, |ϕ (u)− ϕ (v) | ≤ L |u− v |. Show that, in that case,
there exists a constant C1 to be determined such that, for all x ∈ X
and f, g ∈ BR:

|Rϕ (f,x)− Rϕ (g,x) | ≤ C1‖ f − g ‖HK
.

2. ϕ is said to be convex if for all u, v ∈ R and t ∈ [0, 1], ϕ (tu+ (1− t)v) ≤
tϕ(u)+(1−t)ϕ(v). We assume that ϕ is convex, and that for all x ∈ X ,
there exists fx ∈ H which minimizes f 7→ Rϕ(f,x). Show that there
exists a constant C2 > 0 to be determined, such that:

ψ(f,x)
∆
= Rϕ (f,x)−Rϕ (fx,x) ≥ C2‖ f − fx ‖2HK

.

3. Under the hypothesis of questions 2.1 and 2.2, show that there exists
a constant C, to be determined, such that if X is a random variable
with values in X , then:

∀f ∈ BR, Eψ (f,X)2 ≤ CEψ (f,X) .
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Exercice 16. Dual coordinate ascent algorithms for SVMs

1. We recall the primal formulation of SVMs seen in the class (slide 142).

min
f∈H

1

n

n
∑

i=1

max(0, 1− yif(xi)) + λ‖f‖2H,

and its dual formulation (slide 152)

max
α∈Rn

2α⊤y −α⊤Kα such that 0 ≤ yiαi ≤
1

2λn
, for all i.

The coordinate ascent method consists of iteratively optimizing with
respect to one variable, while fixing the other ones. Assuming that
you want to maximize the dual by following this approach. Find (and
justify) the update rule for αj.

2. Consider now the primal formulation of SVMs with intercept

min
f∈H,b∈R

1

n

n
∑

i=1

max(0, 1− yi(f(xi) + b)) + λ‖f‖2H,

Can we still apply the representer theorem? Why? Derive the corre-
sponding dual formulation by using Lagrangian duality. Can we apply
the coordinate ascent method to this dual? If yes, what are the update
rules?

3. Consider a coordinate ascent method to this dual that consists of up-
dating two variables (αi, αj) at a time (while fixing the n − 2 other
variables). What are the update rules for these two variables?

Exercice 17. 2-SVM
The 2-SVM algorithm is a method for supervised binary classification. Given
a training set (xi, yi)i=1,...,n of training patterns x1, . . . , xn in a space X en-
dowed with a positive definite kernel K, and a set of corresponding labels
y1, . . . , yn ∈ {−1, 1}, it solves the following problem:

min
f∈HK

{

1

n

n
∑

i=1

L(f(xi), yi) + λ||f ||2
}

,
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where ||f || is the norm of f in the RKHS HK of the kernel K, and L is the
square hinge loss function:

L(u, y) = max(1− uy, 0)2 .

Write the primal and dual problems associated to the 2-SVM, and compare
the result with the SVM studied in the course.

Exercice 18. Kernel mean embedding
Let us consider a Borel probability measure P of some random variable X
on a compact set X . Let K : X × X → R be a continuous, bounded, p.d.
kernel and H be its RKHS. The kernel mean embedding of P is defined as
the function

µ(P ) : X → R

y 7→ EX∼P [K(X, y)].

1. Show that µ(P ) is in H and that EX∼P [f(X)] = 〈f, µ(P )〉H for any
f ∈ H.
Remark: If P and Q are two Borel probability measures, then

µ(P ) = µ(Q) implies {EX∼P [f(X)] = EX∼Q[f(X)] for all f ∈ H} .

When H is dense in the space of continuous bounded functions on X ,
this relation is sufficient to show that P = Q. Hence, the kernel mean
embedding (single point in the RKHS!) carries all information about the
distribution. We call such kernels “universal”. It is possible to show
that the Gaussian kernel is universal.

2. Consider the empirical distribution

PS =
1

n

n
∑

i=1

δxi
,

where S = {x1, . . . , xn} is a finite subset of X and δxi
is a Dirac distri-

bution centered at xi. Show that

ES [‖µ(P )− µ(PS)‖H] ≤
4
√

EK(X,X)√
n

,
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where ES is the expectation by randomizing over the training set (each
xi is a r.v. distributed according to P ). Remember that you are allowed
to (and you should!) use any existing result from the slides.

3. Consider the quantity

MMD(S1,S2) = ES [‖µ(PS1
)− µ(PS2

)‖2H
for two sets S1 = (x1, . . . , xn) and S2 = (y1, . . . , ym). Show that

MMD(S1,S2) =

(

sup
‖f‖H≤1

{

1

n

n
∑

i=1

f(xi)−
1

m

m
∑

j=1

f(yj)

})2

,

and give a formula for this quantity in terms of kernel evaluations only.
Remark: this is called the maximum mean discrepancy criterion, which
can be used for statistical testing (are S1 and S2 coming from the same
distribution?).

4. We consider X = Rd and the Gaussian kernel with bandwidth σ:
K(x, y) = exp

(

−‖x−y‖2

2σ2

)

. For any two sets S1 and S2, show that

MMD(S1,S2) is an increasing function of σ.

Exercice 19. Sobolev spaces

1. Let

H =
{

f : [0, 1] → R , absolutely continuous, f ′ ∈ L2([0, 1]), f(0) = 0
}

,

endowed with the bilinear form

∀f, g ∈ H , 〈f, g〉H =

∫ 1

0

f ′(u)g′(u)du .

Show that H is an RKHS, and compute its reproducing kernel.

2. Same question when

H =
{

f : [0, 1] → R , absolutely continuous, f ′ ∈ L2([0, 1]), f(0) = f(1) = 0
}

,
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3. Same question, when H is endowed with the bilinear form:

∀f, g ∈ H , 〈f, g〉H =

∫ 1

0

(f(u)g(u) + f ′(u)g′(u)) du .

4. Same question when

H =
{

f : [0, 1] → R , f ′ exists and absolutely continuous, f ′′ ∈ L2([0, 1]), f(0) = f(′0) = 0
}

,

endowed with the bilinear form

∀f, g ∈ H , 〈f, g〉H =

∫ 1

0

f ′′(u)g′′(u)du .

Exercice 20. Splines
Let H = C2 ([0, 1]) be the set of twice continuously differentiable functions
f : [0, 1] → R, and H1 ⊂ H be the set of functions f ∈ H that satisfy:

f(0) = f ′(0) = 0.

1. Show that H1 endowed with the norm:

‖ f ‖2H1
=

∫ 1

0

f ′′(t)2dt

is a reproducing kernel Hilbert space (RKHS), and compute the repro-
ducing kernel K1.

2. Let H2 be the set of affine functions f : [0, 1] → R (i.e., the functions
that can be written as f(x) = ax + b, with a, b ∈ R). Show that H2

endowed with the norm:

‖ f ‖2H2
= f(0)2 + f ′(0)2

is a RKHS and compute the corresponding kernel K2.

3. Deduce that H endowed with the norm:

‖ f ‖2H =

∫ 1

0

f ′′(t)2dt+ f(0)2 + f ′(0)2

is a RKHS and compute the reproducing kernel K.
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4. Let 0 < x1 < . . . < xn < 1 and (y1, . . . , yn) ∈ Rn. In order to esti-
mate a regression function f : [0, 1] → R, we consider the following
optimization problem:

min
f∈H

1

n

n
∑

i=1

(f (xi)− yi)
2 + λ

∫ 1

0

f ′′(t)2dt. (3)

Show that any solution of (3) can be expanded as:

f̂(x) =
n
∑

i=1

αiK1(xi, x) + β1x+ β2,

with α = (α1, . . . , αn)
′ ∈ Rn et β = (β0, β1)

′ ∈ R2.

5. Let I be the n × n identity matrix, M be the square n × n matrix
defined by:

Mi,j =

{

K1(xi, xj) si i 6= j,

K1(xi, xj) + nλ si i = j,

T be the n× 2 matrix:

T =







1 x1
...

...
1 xn






,

and y = (y1, . . . , yn)
′. Show that α and β satisfy:

{

T ′α = 0,

Mα + Tβ = y.

6. Deduce that α and β are given by:

{

α =M−1
(

I − T (T ′M−1T )
−1
T ′M−1

)

y,

β = (T ′M−1T )
−1
T ′M−1y.

7. Show that

• f̂ ∈ C2 ([0, 1]);
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• f̂ is a polynomial of degree 3 on each interval [xi, xi+1] for i =
1, . . . , n− 1;

• f̂ is an affine function on both intervals [0, x1] and [xn, 1] .

f̂ is called a spline.

Exercice 21. Duality
Let (x1, y1), . . . , (xn, yn) a training set of examples where xi ∈ X , a space
endowed with a positive definite kernel K, and yi ∈ {−1, 1}, for i = 1, . . . , n.
HK denotes the RKHS of the kernel K. We want to learn a function f :
X 7→ R by solving the following optimization problem:

min
f∈HK

1

n

n
∑

i=1

ℓyi (f(xi)) such that ‖ f ‖HK
≤ B , (4)

where ℓy is a convex loss functions (for y ∈ {−1, 1}) and B > 0 is a parameter.

1. Show that there exists λ ≥ 0 such that the solution to problem (7) can
be found be solving the following problem:

min
α∈Rn

R(Kα) + λα⊤Kα , (5)

whereK is the n×n Gram matrix and R : Rn 7→ R should be explicited.

2. Compute the Fenchel-Legendre transform3 R∗ of R in terms of the
Fenchel-Legendre transform ℓ∗y of ℓy.

3. Adding the slack variable u = Kα, the problem (7) can be rewritten
as a constrained optimization problem:

min
α∈Rn,u∈Rn

R(u) + λα⊤Kα such that u = Kα . (6)

Express the dual problem of (6) in terms of R∗, and explain how a
solution to (6) can be found from a solution to the dual problem.

3For any function f : RN 7→ R, the Fenchel-Legendre transform (or convex conjugate)
of f is the function f∗ : RN 7→ R defined by

f∗(u) = sup
x∈RN

x⊤u− f(x) .
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4. Explicit the dual problem for the logistic and squared hinge losses:

ℓy(u) = log(1 + e−yu) .

ℓy(u) = max(0, 1− yu)2 .

Exercice 22. Bn-splines
The convolution between two functions f, g : R → R is defined by:

f ⋆ g(x) =

∫ ∞

−∞

f(u)g(x− u)du,

when this integral exists.
Let now the function:

I(x) =

{

1 si − 1 ≤ x ≤ 1,

0 si x < −1 ou x > 1,

and Bn = I⋆n for n ∈ N∗ (that is, the function I convolved n times with
itself: B1 = I, B2 = I ⋆ I, B3 = I ⋆ I ⋆ I, etc...).

Is the function k(x, y) = Bn(x− y) a positive definite kernel over R×R?
If yes, describe the corresponding reproducing kernel Hilbert space.

Exercice 23. Semigroup kernels

1. Are the following functions positive definite kernels?

∀x, y ∈ R, K2(x, y) =
1

2− e−‖x−y ‖2

∀x, y ∈ R, K3(x, y) = max (0, 1− |x− y|)

2. For any n > 0, show that the n × n Hankel matrix Aij = 1
1+i+j

is
positive semidefinite.

3. Describe the functions ϕ : [0, 1] 7→ R such that:

K(x, y) = ϕ (max(x+ y − 1, 0))

is a positive definite kernel on [0, 1].
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4. Can you describe the functions ϕ : R+ 7→ R such that:

K(x, y) = ϕ (max(x, y))

is a positive definite kernel on R+ ?

Exercice 24. Gaussian RKHS
For any σ > 0, let Kσ be the normalized Gaussian kernel on Rd:

∀x, y ∈ Rd Kσ(x, y) =
1

(√
2πσ

)d
exp

(

−‖ x− y ‖2
2σ2

)

,

and let Hσ be its reproducing kernel Hilbert space (RKHS).

1. Recall a proof of the positive definiteness of K.

2. For any 0 < σ < τ , show that

Hτ ⊂ Hσ ⊂ L2(R
d) ,

3. For any 0 < σ < τ and f ∈ Hτ , show that

‖ f ‖Hτ
≥ ‖ f ‖Hσ

≥ ‖ f ‖L2(Rd) ,

and that

0 ≤ ‖ f ‖2Hσ
− ‖ f ‖2L2(Rd) ≤

σ2

τ 2

(

‖ f ‖2Hτ
− ‖ f ‖2L2(Rd)

)

.

4. For any τ > 0 and f ∈ Hτ , show that

lim
σ→0

‖ f ‖Hσ
= ‖ f ‖L2(Rd) .

Exercice 25. Kernel for sets
We wish to construct positive definite kernels for finite sets of points in the
interval [0, 1]. Let X = (x1, . . . , xn) and Y = (y1, . . . , yn) be two such sets of
length n and m.
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1. Show that the following kernel is positive definite for any σ > 0:

K1(X, Y ) =
∑

x∈X

∑

y∈Y

exp

(

−(x− y)2

2σ2

)

.

2. To any finite set X of length n we associate the function gX : R → R

defined by:

gX(t) =
1

n

∑

x∈X

exp

(

−(x− t)2

2σ2

)

.

Show that the following kernel is positive definite for any σ > 0:

K2(X, Y ) =

∫

R

gX(t)gY (t)dt .

Is there a simple relation between K1(X, Y ) and K2(X, Y )?

3. Let P be a partition of [0, 1]. For any bin p ∈ P, let np(X) be the
number of points of X which are in p. Show that the following kernels
are positive definite:

K3(X, Y ) =
∑

p∈P

min(np(X), np(Y )) ,

K4(X, Y ) =
∏

p∈P

min(np(X), np(Y )) .

4. Let TD be a complete binary tree of depth D, that is, a directed graph
such that, starting from the root, each node has two children, until the
nodes in the D-th generation which have no children (nodes with no
children are called leaves). The nodes of TD are denoted s ∈ TD. How
many nodes are there in TD?

5. We denote by S(TD) the set of connected subgraphs of TD which contain
the root and such that all their nodes have either 0 or 2 children. What
is the size of S(TD) for D = 10?

6. For 0 < p < 1, we consider the following rule to generate randomly
a tree in S(TD). We start at the root, and give it two children with
probability p, and no child with probability 1−p. If it has no child, then
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the process stops and the tree generated is the root only. Otherwise,
the same rule is applied independently to both children, which have
themselves 0 or 2 children with probability 1− p and p. The process is
repeated iteratively to all new children, until no more child is generated,
or until we reach theD-th generation where nodes have no children with
probability 1. For any T ∈ S(TD) we denote by π(T ) the probability
of generating T by this process. For any real-valued function h defined
over the set of nodes s ∈ TD, propose a factorization to compute the
following sum efficiently:

∑

T∈S(TD)

π(T )
∏

s∈leaves(T )

h(s) .

7. Suppose that each leaf s ∈ leaves(TD) is associated to a interval p(s)
of [0, 1] which together form a partition. For any node s ∈ TD we
denote by D(s) the set of leaves of TD which are descendant of s, and
we associate to s the subset p(s) ⊂ [0, 1] defined by:

p(s) =
⋃

l∈D(s)

p(l) .

For any T ∈ S(TD), show that the following function is a positive
definite kernel:

KT (X, Y ) =
∏

s∈leaves(T )

min(np(s)(X), np(s)(Y )) .

8. Show that the following function is a positive definite kernel and pro-
pose an efficient implementation to compute it

K5(X, Y ) =
∑

T∈S(TD)

π(T )KT (X, Y ) .

Exercice 26. Rademacher complexity of MKL
Given a fixed sample of n points S = (x1, . . . , xn) in a space X , the empirical
Rademacher complexity of a set of function F ⊂ RX is:

R(F) =
1

n
E

[

sup
f∈F

n
∑

i=1

σif(xi)

]

,
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where the expectation is taken over σi ∈ {−1,+1} for i = 1, . . . , n, which
are independent uniform Rademacher random variables. The following result
can be used without proof:

Lemma 1. For any n×n symmetric p.s.d. matrix K, and σ = (σ1, . . . , σn)
⊤

a vector of independent Rademacher random variables, the following holds:

∀r ∈ N∗ , E
(

σ⊤Kσ
)r ≤ (2r trace (K))r .

1. Let k be a p.d. kernel over X with RKHS Hk, K its Gram matrix on
S, and B(k, t) = {f ∈ Hk : ‖ f ‖Hk

≤ t}. Show that

∀t > 0 , R (B(k, t)) ≤ t
√

trace (K)

n
.

2. If, in addition, there exists M > 0 such that ∀x ∈ X , k(x, x) ≤ M2,
show that

∀t > 0 , R (B(k, t)) ≤ tM√
n

3. Let now k1, . . . , kp be p p.d. kernel on X , and kη =
∑n

i=1 ηiki for any
η ∈ ∆ = {η ∈ Rp : ∀i = 1, . . . , p, ηi ≥ 0 and

∑p
i=1 ηi = 1}. Show that

kη is a p.d. kernel for any η ∈ ∆, and that, for any non-zero integer
r ∈ N∗

∀t > 0 , R

(

⋃

η∈∆

B(kη, t)
)

≤ t
√
2r (
∑p

i=1 trace (Ki)
r)

1

2r

n
.

4. If there exists M > 0 such that ∀i = 1, . . . , p, ∀x ∈ X , ki(x, x) < M2,
show that

∀t > 0 , R

(

⋃

η∈∆

B(kη, t)
)

≤ tM

√

2e(ln p+ 1)

n
.

5. (Bonus) Prove Lemma 1.

Exercice 27. MKL on a DAG
Let V = (v1, . . . , vM) be the vertices of a directed acyclic graph (DAG). For
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any v ∈ V , we denote by D(v) ⊂ V the set of descendants of v (including
itself), and let dv ≥ 0 be a weight associated to each vertex v. We assume
that to each vertex v ∈ V is associated a positive definite kernel Kv over a
space X .

1. Using the notations of the course (slide 159), show that the following
weighted MKL with the set of kernels {Kv : v ∈ V }:

min
(fv1 ,...,fvM )∈HKv1

×...×HKvM







R

(

∑

v∈V

fn
v

)

+ λ

(

∑

v∈V

dv‖ fv ‖HKv

)2






is equivalent to solving:

min
η∈Σ

min
f∈HKη

{

R(fn) + λ‖ f ‖2HKη

}

for some set Σ to be determined.

2. We now consider the following variant of MKL which takes the graph
structure into account:

min
(fv1 ,...,fvM )∈HKv1

×...×HKvM











R

(

∑

v∈V

fn
v

)

+ λ







∑

v∈V

dv





∑

w∈D(v)

‖ fw ‖2HKw





1

2







2









.

(7)
Can you intuitively explain why we may want to do this, and what we
can expect from the solution of this formulation?

3. Show that the MKL formulation (7) is equivalent to solving:

min
η∈ΣV

min
f∈HKη

{

R(fn) + λ‖ f ‖2HKη

}

for some set ΣV to be determined.

4. Show that if the DAG is a tree, then ΣV is convex. Is it also convex
for a general DAG?
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Exercice 28. Properties of the dot-product kernel
Consider the dot-product kernel on the sphere K1 : Sp−1 × Sp−1 → R such
that for all pair of points x, x′ in Sp−1 (unit sphere of Rp),

K1(x, x
′) = κ(〈x, x′〉),

where κ : [−1, 1] → R is an infinitely differentiable function that admits a
polynomial expansion on [−1, 1]:

κ(u) =
+∞
∑

i=0

aiu
i, (8)

where the ai’s are real coefficients and the sum above is always converging.

1. Show that if all coefficients ai are non-negative and κ 6= 0, then K1 is
p.d.

2. If K1 is p.d., show that the homogeneous dot-product kernel K2 : R
p×

Rp → R is also p.d..

K2(x, x
′) =

{

‖x‖‖x′‖κ
(

〈x,x′〉
‖x‖‖x′‖

)

if ‖x‖ 6= 0 and ‖x′‖ 6= 0

0 otherwise
.

Remark: it is in fact possible to show that all coefficients ai need to be
non-negative for the positive definiteness to hold for all dimension p,
but we do not ask for a proof of this result, which is due to Shoenberg,
1942.

3. Assume that all coefficients ai are non-negative (K1 is thus p.d.) and
that κ(1) = κ′(1) = 1. Let H be the RKHS of K1 and consider its
RKHS mapping ϕ : Sp−1 → H such that K1(x, x

′) = 〈ϕ(x), ϕ(x′)〉H for
all x, x′ in Sp−1. Show that:

∀x, x′ ∈ Sp−1 , ‖ϕ(x)− ϕ(x′)‖H ≤ ‖x− x′‖.

4. Find an explicit feature map ψ : Sp−1 → ℓ2, where ℓ2 is the Hilbert
space of real-valued sequences (see definition on slide 240), such that
for all x, y in Sp−1

K1(x, y) = 〈ψ(x), ψ(y)〉ℓ2.
Hint: remember that 〈x, y〉2 = 〈xx⊤, yy⊤〉F, where 〈., 〉F is the Frobenius
inner-product. You may want to use the tensor product notation x⊗2 =
xx⊤ and its generalization for degrees higher than 2.
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5. Let us assume that you have found an explicit feature map ψ in the
previous question. Remember from one of our previous homeworks that
the RKHS H of K1 can be characterized by

H = {fw : w ∈ ℓ2} such that fw : x 7→ 〈w, ψ(x)〉H,

with
‖fw‖2H = inf

w′∈ℓ2

{

‖w′‖2ℓ2 : fw = fw′

}

.

Consider then a function gz : S
p−1 → R of the form

gz : x 7→ σ(〈z, x〉)

with z in Sp−1 and σ admits a polynomial expansion σ(u) =
∑+∞

i=0 biu
i.

Could you find a sufficient condition on z and on the coefficients bi
for gz to be in H?

Remark: gz can be interpreted as a one-layer neural network function.
We could ask you to do the same analysis for the homogeneous kernel
K2, but this would be unnecessary technical for this homework which
is already too long. This being said, if you found it too short, we’re
happy to see your analysis of K2 and the type of functions gz you will
consider.

Exercice 29. Support Vector Classifier
Consider a dataset of N pairs (xi, yi) where each xi is a vector of dimension
d and yi is a binary class, i.e. yi ∈ {−1, 1}. We would like to separate
the two classes of samples with a separating hyper-surface of equation
f(xi) + b = 0 such that f(xi) + b ≤ 0 if xi belongs to the class yi = −1 and
f(xi) + b ≥ 0 if yi = 1.

I. Maximum margin separator. We consider the simple case where
the hyper-surface is a hyperplan of equation f(x) = w⊤x = 0. The max-
imum margin classifier finds a hyperplan that separates the two classes
while being the furthest away from the data. This can be expressed as the
following opitimization problem:

min
w,b

1

2
‖w‖2

s.t. yi(x
T
i w + b) ≥ 1, i ∈ {1, ..., N}

(9)
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II. Soft Margin Support Vector Classifier. When the classes are
non-separable due to the presence of noise, one approach is to relax the hard
constraints yi(x

T
i w + b) ≥ 1 to soft ones yi(x

T
i w + b) ≥ 1 − ξi where ξi is

a non-negative tolerance. This allows some outlier data points to fail the
margin constraint up to ξi. To discourage high values of the tolerance ξi an
additional penalty is introduced to the problem, thus yielding:

min
w,b,ξi

1

2
‖w‖2 + C

n
∑

i=1

ξi

s.t. yi(x
T
i w + b) ≥ 1− ξi

ξi ≥ 0

(10)

III. Kernel Support Vector Classifier. For more complicated prob-
lems, the classes cannot be separated by a simple hyperplane. Instead, one
needs to find a non-linear hyper-surface of equation f(x)+ b = 0. To achieve
this, we consider functions f that belong to a Reproducing Kernel Hilbert
Space H of kernel k. Such choice allows to represent highly non-linear hyper-
surfaces while still solving a convex problem of the form:

min
f,b,ξi

1

2
‖f‖2 + C

n
∑

i=1

ξi

s.t. yi(f(xi) + b) ≥ 1− ξi

ξi ≥ 0

(11)

1. Without providing the details of the calculations:
(a) Provide an expression for the Lagrangian of the problems in ??????
in terms of N dual parameters αi ≥ 0 corresponding the margin in-
equalities and N dual parameters µi ≥ 0 corresponding to the positiv-
ity constraints on ξi whenever applicable.
(b) Using the optimality condition on the Lagrangian, express the dual
problem as a constrained minimization over (αi)i∈{1,...,N} and ex-
press f(x) in terms of αi and relevant quantities.
(c) Using Strong duality (KKT conditions), find a condition char-
acterizing the support vector points xi that are on the margin of
the separating hyper-surface, i.e. the points satisfying the equation
yi(f(xi) + b) = 1.
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2. In the notebook, the classes MMS and SVC correspond to ????. For
each class, implement the method fit that computes the optimal dual
parameters αi, the parameters w, b and the support vectors.

3. In the notebook, implement the method kernel of the class RBF, which
takes as input two data matrices X and Y of size N × d and M × d
and returns a gramm matrix G of shape N ×M whose components are
k(xi, yj) = exp(−‖xi − yi‖2/(2σ2)). (The fastest solution does not use
any for loop!)

4. In the notebook, the class KernelSVC corresponds to ??:
(a) Implement the method fit that computes the optimal dual pa-
rameters αi, the parameter b and the support vectors.
(b) Implement the method separating_function that takes a matrix
of shape N ′×d and returns a vector of size N ′ of evaluations of f .

5. Report the outputs for each code block that performs a classification.

Exercice 30. Kernel Ridge Regression
Given a dataset of N pairs (xi, yi) where xi is a vector of dimension d and
yi is a real number. The regression is the task of finding a function f from
Rd to R such that f(xi) + b ≃ yi for some scalar b. Kernel Ridge Regression
can model potentially complex/non-linear dependence between xi and yi by
assuming the regression function f belongs to an RKHS H of kernel k and
by solving a convex optimization problem:

min
fj ,bj

1

N

N
∑

i=1

‖f(xi) + b− yi‖2 +
λ

2
‖f‖2H (12)

When the variable yi is a vector of dimension q a simple extension to ?? con-
sists in finding q functions (fj)1≤j≤q in H and scalars (bj)1≤j≤q for regressing
each dimension of (yi)1≤j≤d, i.e. fj(xi) + bj ≃ (yi)j. This can be achieved by
solving the problem of the form:

min
f,b

1

N

N
∑

i=1

q
∑

j=1

‖fj(xi) + bj − (yi)j‖2 +
λ

2

q
∑

j=1

‖fj‖2H (13)
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1. Without providing the details of the calculations and using the Repre-
senter theorem, provide an equivalent finite-dimensional optimization
problem for both ???? and find a closed-form expression for f and b in
terms of the solutions of such problems.

2. In the notebook, the classes KernelRR and MultivariateKernelRR

correspond to ????:
(a) Implement the method fit, which solves the finite dimensional
problems obtained by the Representer theorem.
(b) Implement the method regression_function that takes a matrix
of shape M×d and returns a vector of size M of evaluations of f .

3. Report the outputs of each code block that performs a regression.

Exercice 31. Kernel Support Vector Regression
Given a dataset of N pairs (xi, yi), where xi is a vector of dimension d
and yi is a scalar and an RKHS H of kernel k, the Kernel Support Vector
Regression (Kernel SVR) finds a regression function f ∈ H and scalar b such
that f(xi) + b − yi are within and tube of size η > 0 with some tolerance.
More precisely, the Kernel SVR solves the problem:

min
f,b,ξ+,ξ−

1

2
‖f‖2 + C

N
∑

i=1

ξ+i + ξ−i

s.t. yi − f(xi)− b ≤ ǫ+ ξ+i
− yi + f(xi) + b ≤ ǫ+ ξ−i
ξ+i , ξ

−
i ≥ 0

(14)

1. Without providing the details of the calculations:
(a) Provide an expression for the Lagrangian of the problems in ?? in
terms of:
- 2N dual parameters (α+

i )1≤i≤N ≥ 0 and (α−
i )1≤i≤N ≥ 0 corresponding

the tube inequalities yi−f(xi)−b ≤ ǫ+ξ+i and −yi+f(xi)+b ≤ ǫ+ξ−i
- N dual parameters µ+

i and µ−
i corresponding to the positivity con-

straints on ξ+i and ξ−i .
(b) Using the optimality condition on the Lagrangian, express the
dual problem as a constrained minimization over (α+

i )i∈{1,...,N} and
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(α−
i )1≤i≤N , then provide an expression for f(x) in terms of (α+

i )1≤i≤N ,
(α−

i )1≤i≤N and relevant quantities.
(c) Using Strong duality (KKT conditions), find a condition charac-
terizing the support vector points xi that are on the boundary of
the tube, i.e. the points satisfying the equation yi − f(xi) − b = η or
−yi + f(xi) + b = η.

2. In the notebook, the class KernelSVR corresponds to ??:
(a) Implement the method fit that computes the optimal dual pa-
rameters α+

i , α
−
i , the parameter, b and the support vectors.

(b) Implement the method regression_function that takes a matrix
of shape M×d and returns a vector of size M of evaluations of f .

3. Report the output of the code block that performs the regression.

Exercice 32. Kernel PCA
One motivation for Kernel PCA is to perform non-linear dimensionality re-
duction of the data. This is relevant, for instance, when the data is concen-
trated on a lower dimensional manifold that is not a hyperplane. Given a
dataset of N points xi, the first step for performing kernel PCA is to map
each data point xi to some nonlinear feature ϕ(xi) in an RKHS H space cor-
responding to a kernel k(x, y) = 〈ϕ(x), ϕ(y)〉. One then define the centered
features ϕ̃(Xi) = ϕ(Xi)− 1

N

∑N
j=1 ϕ(Xj) and the covariance operator C

C =
1

N

N
∑

i=1

ϕ̃(Xi)⊗ ϕ̃(Xi)

Where ⊗ denotes the tensor product associated to the inner-product 〈., .〉,
i.e. ⊗ is a binary operation on H×H such that for any u and v in H, u⊗ v
is a linear operator from in H satisfying (u⊗ v)f = 〈v, f〉u for any f ∈ H.

Kernel PCA, consists in finding non-trivial eigenvectors of the operator
C, i.e. elements v ∈ H such that Cv = λv for positive λ and ‖v‖ = 1.

1. Show that each non-trivial eigenvector of C can be expressed as a linear
combination of the features ϕ̃(Xi), with a vector of coefficients α =
(αi)1:N being an eigenvector of some square matrix G of size N and
satisfying some normalization condition.
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2. In the notebook, the class Kernel_PCA performs a Kernel PCA given
some kernel as input:
(a) Implement the method compute_PCA which finds the top r eigen-
vectors of the matrix G.
(b) Implement the method transform which takes as input a data ma-
trix of shape M × d and computes its representation of shape M × r
along the r first eigenvectors of the covariance operator C.

3. Report the output of the code block that performs the PCA. What can
you conclude?

4. (Bonus). The representation of the data obtained by kernel PCA
can be interpreted as an r-dimensional encoding of the data (the en-
coder). From such encoding, it is possible to reconstruct the original
data by solving a multivariate regression problem which can be inter-
preted as a decoder. The encoding-decoding of the data can be used
in tasks such as de-noising. In the notebook KernelPCA, the class
Denoiser achieves this by making use of the classes KernelPCA and
MultivariateKernelRR previously implemented.
(a) Implement the method fit that takes as input a noisy training set
and learns both encoder and decoder.
(b) Implement the method denoise which takes as input a noisy test
dataset and returns a corresponding de-noised dataset.

5. (Bonus). Report the output of the code block that performs de-noising
of a subset of MNIST digits dataset. To what extend the de-noising is
successful? How can it be improved?
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