
”Kernel methods in machine learning”

Homework 2

Due on March 01, 2023, 3pm

1 General instructions:

1. The delivery must be a single PDF file containing answers to
all questions.

2. You must upload the PDF to the GradeScope platform af-
ter creating an account there. See instructions in the course
webpage for using GradeScope.

This homework contains both mathematical and coding questions:

• Exercises 1 and 2 are essentially coding questions. Some questions
require providing some equations without proofs. Please only include
the final results in this case, without the details of the derivations.

• The coding questions require implementing some methods that are de-
scribed in a Jupyter notebook (Homework.ipnb) attached to this home-
work. Please follow the template of the notebook and only fill in the
gaps whenever asked for. You should take a screenshot of the code
you wrote and include it to the PDF.

• Some questions require running a code block in the Jupyter notebook to
check your implementation. You should take a screenshot of all whole
output of the (figures + any text that appears) and include it to the
PDF.

1



Exercice 1. Support Vector Classifier
Consider a dataset of N pairs (xi, yi) where each xi is a vector of dimension d
and yi is a binary class, i.e. yi ∈ {−1, 1}. We would like to separate the two
classes of samples with a separating hyper-surface of equation f(xi)+b =
0 such that f(xi)+b ≤ 0 if xi belongs to the class yi = −1 and f(xi)+b ≥ 0 if
yi = 1. To achieve this, we consider functions f that belong to a Reproducing
Kernel Hilbert Space H of kernel k. Such choice allows to represent highly
non-linear hyper-surfaces while still solving a convex problem of the form:

min
f,b,ξi

1

2
‖f‖2 + C

n∑

i=1

ξi

s.t. yi(f(xi) + b) ≥ 1− ξi

ξi ≥ 0

(1)

1. Without providing the details of the calculations:
(a) Provide an expression for the Lagrangian of the problems in eq. (1)
in terms of N dual parameters αi ≥ 0 corresponding the margin in-
equalities and N dual parameters µi ≥ 0 corresponding to the positiv-
ity constraints on ξi whenever applicable.
(b) Using the optimality condition on the Lagrangian, express the dual
problem as a constrained minimization over (αi)i∈{1,...,N} and ex-
press f(x) in terms of αi and relevant quantities.
(c) Using Strong duality (KKT conditions), find a condition char-
acterizing the support vector points xi that are on the margin of
the separating hyper-surface, i.e. the points satisfying the equation
yi(f(xi) + b) = 1.

2. (a) In the notebook, implement the method kernel of the classes RBF
and Linear, which takes as input two data matrices X and Y of size
N × d and M × d and returns a gramm matrix G of shape N × M
whose components are k(xi, yj) = exp(−‖xi− yi‖

2/(2σ2)) for RBF and
k(xi, yj) = x⊤

i yj for the linear kernel. (The fastest solution does not
use any for loop!)
In the notebook, the class KernelSVC corresponds to eq. (1):
(b) Implement the method fit that computes the optimal dual pa-
rameters αi, the parameter b and the support vectors.
(c) Implement the method separating_function that takes a matrix
of shape N ′×d and returns a vector of size N ′ of evaluations of f .
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(d) Report the outputs for each code block that performs a classifica-
tion.

Exercice 2. Kernel PCA
One motivation for Kernel PCA is to perform non-linear dimensionality re-
duction of the data. This is relevant, for instance, when the data is concen-
trated on a lower dimensional manifold that is not a hyperplane. Given a
dataset of N points xi, the first step for performing kernel PCA is to map
each data point xi to some nonlinear feature ϕ(xi) in an RKHS H space cor-
responding to a kernel k(x, y) = 〈ϕ(x), ϕ(y)〉. One then define the centered
features ϕ̃(Xi) = ϕ(Xi)−

1

N

∑N

j=1
ϕ(Xj) and the covariance operator C

C =
1

N

N∑

i=1

ϕ̃(Xi)⊗ ϕ̃(Xi)

Where ⊗ denotes the tensor product associated to the inner-product 〈., .〉,
i.e. ⊗ is a binary operation on H×H such that for any u and v in H, u⊗ v
is a linear operator from in H satisfying (u⊗ v)f = 〈v, f〉u for any f ∈ H.

Kernel PCA, consists in finding non-trivial eigenvectors of the operator
C, i.e. elements v ∈ H such that Cv = λv for positive λ and ‖v‖ = 1.

1. Show that each non-trivial eigenvector of C can be expressed as a linear
combination of the features ϕ̃(Xi), with a vector of coefficients α =
(αi)1:N being an eigenvector of some square matrix G of size N and
satisfying some normalization condition.

2. In the notebook, the class Kernel_PCA performs a Kernel PCA given
some kernel as input:
(a) Implement the method compute_PCA which finds the top r eigen-
vectors of the matrix G.
(b) Implement the method transform which takes as input a data ma-
trix of shape M × d and computes its representation of shape M × r
along the r first eigenvectors of the covariance operator C.
(c) Report the output of the code block that performs the PCA. What
can you conclude?
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3. (Bonus). The representation of the data obtained by kernel PCA
can be interpreted as an r-dimensional encoding of the data (the en-
coder). From such encoding, it is possible to reconstruct the original
data by solving a multivariate regression problem which can be inter-
preted as a decoder. The encoding-decoding of the data can be used
in tasks such as de-noising. In the notebook KernelPCA, the class
Denoiser achieves this by making use of the classes KernelPCA and
MultivariateKernelRR previously implemented.
(a) Implement the method fit that takes as input a noisy training set
and learns both encoder and decoder.
(b) Implement the method denoise which takes as input a noisy test
dataset and returns a corresponding de-noised dataset.
(c) Report the output of the code block that performs de-noising of
a subset of MNIST digits dataset. To what extend the de-noising is
successful? How can it be improved?
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