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"Kernel methods in machine learning”
Homework 2

Due on March 01, 2023, 3pm

General instructions:

The delivery must be a single PDF file containing answers to
all questions.

You must upload the PDF to the GradeScope platform af-
ter creating an account there. See instructions in the course
webpage for using GradeScope.

This homework contains both mathematical and coding questions:

Exercises 1 and 2 are essentially coding questions. Some questions
require providing some equations without proofs. Please only include
the final results in this case, without the details of the derivations.

The coding questions require implementing some methods that are de-
scribed in a Jupyter notebook (Homework.ipnb) attached to this home-
work. Please follow the template of the notebook and only fill in the
gaps whenever asked for. You should take a screenshot of the code
you wrote and include it to the PDF.

Some questions require running a code block in the Jupyter notebook to
check your implementation. You should take a screenshot of all whole
output of the (figures + any text that appears) and include it to the
PDF.



Exercice 1. Support Vector Classifier

Consider a dataset of N pairs (x;, y;) where each z; is a vector of dimension d
and y; is a binary class, i.e. y; € {—1,1}. We would like to separate the two
classes of samples with a separating hyper-surface of equation f(z;)+b =
0 such that f(z;)+0b < 0if x; belongs to the class y; = —1 and f(z;)+b > 0 if
y; = 1. To achieve this, we consider functions f that belong to a Reproducing
Kernel Hilbert Space H of kernel k. Such choice allows to represent highly
non-linear hyper-surfaces while still solving a convex problem of the form:
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1. Without providing the details of the calculations:
(a) Provide an expression for the Lagrangian of the problems in eq. (1)
in terms of N dual parameters «; > 0 corresponding the margin in-
equalities and N dual parameters p; > 0 corresponding to the positiv-
ity constraints on & whenever applicable.
(b) Using the optimality condition on the Lagrangian, express the dual
problem as a constrained minimization over (ai>ie{1,...,N} and ex-
press f(x) in terms of o; and relevant quantities.
(c) Using Strong duality (KKT conditions), find a condition char-
acterizing the support vector points z; that are on the margin of
the separating hyper-surface, i.e. the points satisfying the equation

yi(f () +b) = 1.

2. (a) In the notebook, implement the method kernel of the classes RBF
and Linear, which takes as input two data matrices X and Y of size
N x d and M x d and returns a gramm matrix G of shape N x M
whose components are k(z;,y;) = exp(—||z; — vi||*/(20?)) for RBF and
k(xi,y;) = ] y; for the linear kernel. (The fastest solution does not
use any for loop!)

In the notebook, the class KernelSVC corresponds to eq. ():

(b) Implement the method fit that computes the optimal dual pa-
rameters «;, the parameter b and the support vectors.

(c) Implement the method separating_function that takes a matrix
of shape N’xd and returns a vector of size N’ of evaluations of f.



(d) Report the outputs for each code block that performs a classifica-
tion.

Exercice 2. Kernel PCA

One motivation for Kernel PCA is to perform non-linear dimensionality re-
duction of the data. This is relevant, for instance, when the data is concen-
trated on a lower dimensional manifold that is not a hyperplane. Given a
dataset of NV points x;, the first step for performing kernel PCA is to map
each data point x; to some nonlinear feature ¢(z;) in an RKHS H space cor-
responding to a kernel k(z,y) = (¢(x), ¢(y)). One then define the centered
features ¢(X;) = ¢(X;) — ~ Z?{:l ©(X;) and the covariance operator C

C = % ; ?(X:) ® ¢(X;)

Where ® denotes the tensor product associated to the inner-product (., .),
i.e. ® is a binary operation on H x H such that for any v and v in H, u ®@v
is a linear operator from in H satisfying (v ® v)f = (v, f)u for any f € H.

Kernel PCA, consists in finding non-trivial eigenvectors of the operator
C, i.e. elements v € H such that Cv = \v for positive A and [jv] = 1.

1. Show that each non-trivial eigenvector of C' can be expressed as a linear
combination of the features @(X;), with a vector of coefficients a =
(cv;)1.n being an eigenvector of some square matrix G of size N and
satisfying some normalization condition.

2. In the notebook, the class Kernel _PCA performs a Kernel PCA given
some kernel as input:
(a) Implement the method compute_PCA which finds the top r eigen-
vectors of the matrix G.
(b) Implement the method transform which takes as input a data ma-
trix of shape M x d and computes its representation of shape M x r
along the r first eigenvectors of the covariance operator C.
(c) Report the output of the code block that performs the PCA. What
can you conclude?



3. (Bonus). The representation of the data obtained by kernel PCA
can be interpreted as an r-dimensional encoding of the data (the en-
coder). From such encoding, it is possible to reconstruct the original
data by solving a multivariate regression problem which can be inter-
preted as a decoder. The encoding-decoding of the data can be used
in tasks such as de-noising. In the notebook KernelPCA, the class
Denoiser achieves this by making use of the classes KernelPCA and
MultivariateKernelRR previously implemented.

(a) Implement the method fit that takes as input a noisy training set
and learns both encoder and decoder.

(b) Implement the method denoise which takes as input a noisy test
dataset and returns a corresponding de-noised dataset.

(c) Report the output of the code block that performs de-noising of
a subset of MNIST digits dataset. To what extend the de-noising is
successful? How can it be improved?



	 General instructions:

