
”Kernel methods in machine learning”
Homework 2

Due on 03/06/2024 1:30 pm

1 General instructions:

1. The delivery must be a single PDF file containing answers to
all questions.

2. You must upload the PDF to the GradeScope platform af-
ter creating an account there. See instructions in the course
webpage for using GradeScope.

This homework contains both mathematical and coding questions:

• All exercises are essentially coding questions. Some questions require
providing answers without proofs. Please only include the final re-
sults in this case, without derivations.

• The coding questions require implementing some methods that are de-
scribed in a Jupyter notebook (Homework.ipnb) attached to this home-
work. Please follow the template of the notebook and only fill in the
gaps whenever asked for. You should take a screenshot of the code
you wrote and include it to the PDF.

• Some questions require running a code block in the Jupyter notebook to
check your implementation, after selecting reasonable values for some
hyper-parameters. You should take a screenshot of all whole output of
the (figures + any text that appears) and include it to the PDF.
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Exercice 1. Support Vector Classifier
Consider a dataset of N pairs (xi, yi) where each xi is a vector of dimension d
and yi is a binary class, i.e. yi ∈ {−1, 1}. We would like to separate the two
classes of samples with a separating hyper-surface of equation f(xi)+b =
0 such that f(xi)+b ≤ 0 if xi belongs to the class yi = −1 and f(xi)+b ≥ 0 if
yi = 1. To achieve this, we consider functions f that belong to a Reproducing
Kernel Hilbert Space H of kernel k. Such choice allows to represent highly
non-linear hyper-surfaces while still solving a convex problem of the form:

min
f,b,ξi

1

2
‖f‖2 + C

n∑

i=1

ξi

s.t. yi(f(xi) + b) ≥ 1− ξi

ξi ≥ 0

(1)

1. Without providing the details of the calculations:
(a) Provide an expression for the Lagrangian of the problems in eq. (1)
in terms of N dual parameters αi ≥ 0 corresponding the margin in-
equalities and N dual parameters µi ≥ 0 corresponding to the positiv-
ity constraints on ξi whenever applicable.
(b) Using the optimality condition on the Lagrangian, express the dual
problem as a constrained minimization over (αi)i∈{1,...,N} and ex-
press f(x) in terms of αi and relevant quantities.
(c) Using Strong duality (KKT conditions), find a condition char-
acterizing the support vector points xi that are on the margin of
the separating hyper-surface, i.e. the points satisfying the equation
yi(f(xi) + b) = 1.

2. (a) In the notebook, implement the method kernel of the classes RBF
and Linear, which takes as input two data matrices X and Y of size
N × d and M × d and returns a gramm matrix G of shape N × M
whose components are k(xi, yj) = exp(−‖xi− yi‖

2/(2σ2)) for RBF and
k(xi, yj) = x⊤

i yj for the linear kernel. (The fastest solution does not
use any for loop!)
In the notebook, the class KernelSVC corresponds to eq. (1):
(b) Implement the method fit that computes the optimal dual pa-
rameters αi, the parameter b and the support vectors.
(c) Implement the method separating_function that takes a matrix
of shape N ′×d and returns a vector of size N ′ of evaluations of f .
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(d) Report the outputs for each code block that performs a classifica-
tion. What can you conclude?

Exercice 2. Kernel Ridge Regression
Given a dataset of N pairs (xi, yi) where xi is a vector of dimension d and
yi is a real number. The regression is the task of finding a function f from
R

d to R such that f(xi) + b ≃ yi for some scalar b. Kernel Ridge Regression
can model potentially complex/non-linear dependence between xi and yi by
assuming the regression function f belongs to an RKHS H of kernel k and
by solving a convex optimization problem:

min
fj ,bj

1

N

N∑

i=1

‖f(xi) + b− yi‖
2 +

λ

2
‖f‖2H (2)

When the variable yi is a vector of dimension q a simple extension to eq. (2)
consists in finding q functions (fj)1≤j≤q in H and scalars (bj)1≤j≤q for regress-
ing each dimension of (yi)1≤j≤d, i.e. fj(xi)+ bj ≃ (yi)j . This can be achieved
by solving the problem of the form:

min
f,b

1

N

N∑

i=1

q∑

j=1

‖fj(xi) + bj − (yi)j‖
2 +

λ

2

q∑

j=1

‖fj‖
2

H (3)

1. Without providing the details of the calculations and using the Repre-
senter theorem, provide an equivalent finite-dimensional optimization
problem for both eqs. (2) and (3) and find a closed-form expression for
f and b in terms of the solutions of such problems.

2. In the notebook, the classes KernelRR and MultivariateKernelRR

correspond to eqs. (2) and (3):
(a) Implement the method fit, which solves the finite dimensional
problems obtained by the Representer theorem.
(b) Implement the method regression_function that takes a matrix
of shape M×d and returns a vector of size M of evaluations of f .
(c) Report the outputs of each code block that performs a regression.
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Exercice 3. Kernel PCA
One motivation for Kernel PCA is to perform non-linear dimensionality re-
duction of the data. This is relevant, for instance, when the data is concen-
trated on a lower dimensional manifold that is not a hyperplane. Given a
dataset of N points xi, the first step for performing kernel PCA is to map
each data point xi to some nonlinear feature ϕ(xi) in an RKHS H space cor-
responding to a kernel k(x, y) = 〈ϕ(x), ϕ(y)〉. One then define the centered
features ϕ̃(Xi) = ϕ(Xi)−

1

N

∑N

j=1
ϕ(Xj) and the covariance operator C

C =
1

N

N∑

i=1

ϕ̃(Xi)⊗ ϕ̃(Xi)

Where ⊗ denotes the tensor product associated to the inner-product 〈., .〉,
i.e. ⊗ is a binary operation on H×H such that for any u and v in H, u⊗ v
is a linear operator from in H satisfying (u⊗ v)f = 〈v, f〉u for any f ∈ H.

Kernel PCA, consists in finding non-trivial eigenvectors of the operator
C, i.e. elements v ∈ H such that Cv = λv for positive λ and ‖v‖ = 1.

1. Show that each non-trivial eigenvector of C can be expressed as a linear
combination of the features ϕ̃(Xi), with a vector of coefficients α =
(αi)1:N being an eigenvector of some square matrix G of size N and
satisfying some normalization condition.

2. In the notebook, the class Kernel_PCA performs a Kernel PCA given
some kernel as input:
(a) Implement the method compute_PCA which finds the top r eigen-
vectors of the matrix G.
(b) Implement the method transform which takes as input a data ma-
trix of shape M × d and computes its representation of shape M × r
along the r first eigenvectors of the covariance operator C.
(c) Report the output of the code block that performs the PCA. What
can you conclude?

3. (Bonus). The representation of the data obtained by kernel PCA
can be interpreted as an r-dimensional encoding of the data (the en-
coder). From such encoding, it is possible to reconstruct the original
data by solving a multivariate regression problem which can be inter-
preted as a decoder. The encoding-decoding of the data can be used
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in tasks such as de-noising. In the notebook KernelPCA, the class
Denoiser achieves this by making use of the classes KernelPCA and
MultivariateKernelRR previously implemented.
(a) Implement the method fit that takes as input a noisy training set
and learns both encoder and decoder.
(b) Implement the method denoise which takes as input a noisy test
dataset and returns a corresponding de-noised dataset.
(c) Report the output of the code block that performs de-noising of
a subset of MNIST digits dataset. To what extend the de-noising is
successful? How can it be improved?
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