
”Kernel methods in machine learning”

Homework 2

1 General instructions:

1. The delivery must be a single PDF file containing answers to
all questions.

2. You must upload the PDF to the GradeScope platform af-
ter creating an account there. See instructions in the course
webpage for using GradeScope.

This homework contains both mathematical and coding questions:

• Some questions require providing equations without proofs (see ex-
ercise 3). In that case, please only include the final results, without
the details of the derivations. For exercises 1 and 2 you must provide
proofs.

• Exercises 3 essentially coding questions. These require implement-
ing some methods that are described in a Jupyter notebook (Home-
work.ipnb) attached to this homework. Please follow the template of
the notebook and only fill in the gaps whenever asked for. You should
take a screenshot of the code you wrote and include it to the PDF.

• Some questions require running a code block in the Jupyter notebook to
check your implementation. You should take a screenshot of all whole
output of the (figures + any text that appears) and include it to the
PDF.
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Exercice 1. Sobolev spaces
Let H = {f : [0, 1] → R , absolutely continuous, f ′ ∈ L2([0, 1]), f(0) = 0} ,
endowed with the bilinear form

∀f, g ∈ H , 〈f, g〉H =

∫ 1

0

(f(u)g(u) + f ′(u)g′(u)) du .

Show that H is an RKHS, and compute its reproducing kernel.

Exercice 2. Gaussian RKHS
For any σ > 0, let Kσ be the normalized Gaussian kernel on R

d:

∀x, y ∈ R
d Kσ(x, y) =

1
(√

2πσ
)d

exp

(

−‖ x− y ‖2
2σ2

)

,

and let Hσ be its reproducing kernel Hilbert space (RKHS).

1. Recall a proof of the positive definiteness of K.

2. For any 0 < σ < τ , show that

Hτ ⊂ Hσ ⊂ L2(R
d) ,

3. For any 0 < σ < τ and f ∈ Hτ , show that

‖ f ‖Hτ
≥ ‖ f ‖Hσ

≥ ‖ f ‖L2(Rd) ,

and that

0 ≤ ‖ f ‖2Hσ
− ‖ f ‖2L2(Rd) ≤

σ2

τ 2

(

‖ f ‖2Hτ
− ‖ f ‖2L2(Rd)

)

.

4. For any τ > 0 and f ∈ Hτ , show that

lim
σ→0

‖ f ‖Hσ
= ‖ f ‖L2(Rd) .

Exercice 3. Support Vector Classifier
Consider a dataset of N pairs (xi, yi) where each xi is a vector of dimension d
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and yi is a binary class, i.e. yi ∈ {−1, 1}. We would like to separate the two
classes of samples with a separating hyper-surface of equation f(xi)+b =
0 such that f(xi)+b ≤ 0 if xi belongs to the class yi = −1 and f(xi)+b ≥ 0 if
yi = 1. To achieve this, we consider functions f that belong to a Reproducing
Kernel Hilbert Space H of kernel k. Such choice allows to represent highly
non-linear hyper-surfaces while still solving a convex problem of the form:

min
f,b,ξi

1

2
‖f‖2 + C

n
∑

i=1

ξi

s.t. yi(f(xi) + b) ≥ 1− ξi

ξi ≥ 0

(1)

1. Without proofs:
(a) Provide an expression for the Lagrangian of the problems in eq. (1)
in terms of N dual parameters αi ≥ 0 corresponding the margin in-
equalities and N dual parameters µi ≥ 0 corresponding to the positiv-
ity constraints on ξi whenever applicable.
(b) Using the optimality condition on the Lagrangian, express the dual
problem as a constrained minimization over (αi)i∈{1,...,N} and ex-
press f(x) in terms of αi and relevant quantities.
(c) Using Strong duality (KKT conditions), find a condition charac-
terizing the support vector points.

2. (a) In the notebook, implement the method kernel of the classes RBF
and Linear, which takes as input two data matrices X and Y of size
N × d and M × d and returns a gramm matrix G of shape N × M
whose components are k(xi, yj) = exp(−‖xi− yi‖2/(2σ2)) for RBF and
k(xi, yj) = x⊤

i yj for the linear kernel. (The fastest solution does not
use any for loop!)
In the notebook, the class KernelSVC corresponds to eq. (1):
(b) Implement the method fit that computes the optimal dual pa-
rameters αi, the parameter b and the support vectors.
(c) Implement the method separating_function that takes a matrix
of shape N ′×d and returns a vector of size N ′ of evaluations of f .
(d) Complete the implement the function plotClassification and
report the outputs for the code block that performs classification.
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