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Main goal of this course

Extend
well-understood, linear statistical learning techniques
to
real-world, complicated, structured, high-dimensional data
based on
a rigorous mathematical framework
leading to
practical modelling tools and algorithms
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Organization of the course

Contents
@ Present the basic mathematical theory of kernel methods.

@ Introduce algorithms for supervised and unsupervised machine
learning with kernels.

© Develop a working knowledge of kernel engineering for specific data
and applications (graphs, biological sequences, images).

@ Discuss open research topics related to kernels such as large-scale
learning with kernels and “deep kernel learning”.

Practical

@ Course homepage with slides, schedules, homework etc...:
https://mva-kernel-methods.github.io/course-page/

e Evaluation: 20% homework + 40% data challenge + 40% exam.
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Outline

@ Kernels and RKHS
@ Positive Definite Kernels
@ Reproducing Kernel Hilbert Spaces (RKHS)
@ Examples
@ Smoothness functional

9 Kernel tricks
@ The kernel trick
@ The representer theorem

© Kernel Methods: Supervised Learning
o Kernel ridge regression
@ Kernel logistic regression
o Large-margin classifiers
o Interlude: convex optimization and duality
@ Support vector machines
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@ Kernel Methods: Unsupervised Learning
o Kernel PCA
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@ Kernel Methods: Unsupervised Learning
o Kernel PCA
@ Kernel K-means and spectral clustering
@ A quick note on kernel CCA
© The Kernel Jungle
@ Green, Mercer, Herglotz, Bochner and friends
o Kernels for probabilistic models
o Kernels for biological sequences
o Kernels for graphs
o Kernels on graphs
@ Characterizing probabilities with kernels
@ Kernel mean embedding
@ The Maximum Mean Discrepancy
@ Characteristic kernels
e Open Problems and Research Topics
o Multiple Kernel Learning (MKL)
@ Large-scale learning with kernels
@ Foundations of deep learning from a kernel point of view 5 /785



Part 1

Kernels and RKHS



Overview

Motivations
@ Develop versatile algorithms to process and analyze data...
o ...without making any assumptions regarding the type of data
(vectors, strings, graphs, images, ...)

The approach
@ Develop methods based on pairwise comparisons.
@ By imposing constraints on the pairwise comparison function
(positive definite kernels), we obtain a general framework for
learning from data (optimization in RKHS).
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Outline
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@ Characterizing probabilities with kernels
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Representation by pairwise comparisons

---——-—-= () S) =(aat cgagt cac, at ggacgt ct, t gcact act)

Idea
@ Define a “comparison function”: K : X x X — R.
@ Represent a set of n data points S = {x1,X2,...,X,} by the n x n
matrix:

[K] = K(X,‘,XJ') 0

i
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Representation by pairwise comparisons

Remarks

o K is always an n X n matrix, whatever the nature of data: the same
algorithm will work for any type of data (vectors, strings, ...).

@ Total modularity between the choice of function K and the choice of
the algorithm.

o Poor scalability with respect to the dataset size (n® to compute and
store K)... but wait until the end of the course to see how to deal
with large-scale problems

@ We will restrict ourselves to a particular class of pairwise comparison
functions.
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Positive Definite (p.d.) Kernels

Definition
A positive definite (p.d.) kernel on a set X is a function K : X x X - R
that is symmetric:

V(x,x') € X2, K (x,x') = K (¥,x),

and which satisfies, for all N € N, (x1,x2,...,Xxy) € XN and
(31, an, ..., aN) e RN:

ZZaaj (xi,x;) > 0.

i=1 j=1
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Similarity matrices of p.d. kernels

Remarks

e Equivalently, a kernel K is p.d. if and only if, for any N € N and any
set of points (x1,X2,...,xy) € XV, the similarity matrix
[K]; := K (xi, x;) is positive semidefinite.

@ Kernel methods are algorithms that take such matrices as input.
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The simplest p.d. kernel, for real numbers

Lemma
Let X = R. The function K : R? — R defined by:

V(X,x') eR?, K (X,x’) = xx’

is p.d.
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The simplest p.d. kernel, for real numbers

Lemma
Let X = R. The function K : R? — R defined by:

V(x,x') €R? K (x,x) =xx
is p.d.
Proof:
o xx' = x'x

2
N N — N o
© Dz 2y AidXiXj = (Zi:l 3'Xl> =0 U
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The simplest p.d. kernel, for vectors

Lemma

Let X = R?. The function K : X2 — R defined by:
V(x,x') € X2, K (x,x') = <x,x'>Rd

is p.d. (it is often called the linear kernel).
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The simplest p.d. kernel, for vectors

Lemma
Let X = R?. The function K : X2 — R defined by:

V(x,x') € X2, K (x,x') = <x,x'>Rd
is p.d. (it is often called the linear kernel).

Proof:
o (x, />Rd = <X/7X>Rd
° Z: 12.j= 1‘9131 (Xis Xj)ga = || Z: 19X ||Rd >0 O
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A more ambitious p.d. kernel

Lemma

Let X be any set, and ® : X — R?. Then, the function K : X% - R
defined as follows is p.d.:

V(x,x) € X%, K(x,x)= (®(x),® (X))ga -
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A more ambitious p.d. kernel

Lemma

Let X be any set, and ¢ : X — R9. Then, the function K : X2 — R

defined as follows is p.d.:

VY (x,x') € X2, K (x,x") = (®(x),® (X'))ga -

Proof:
o (®(x),®(x))ga = (P (x'), P (x))ps

N N N
° )i j=19idj (@ (xi), P (xj))ga = I| 22721 2P (%) H[%gd >0

O
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Example: polynomial kernel

[ ]
@) e Y Q,
R.¢ ° ole}
e 9 o °® [ ] 0 00 x2?
O (¢]
O

For x = (x1,x2) T € R?, let ®(x) = (x7,V2x1x0, x3) € R*:
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Example: polynomial kernel

[ ]
@) e Y Q,
R .4 ° ole}
e 9 o °® [ ] 0 00 x2?
O (¢]
O

For x = (x1,x2) T € R?, let ®(x) = (x7,V2x1x0, x3) € R*:

K(x,X') = X2x2 + 2x1 X0 X + X3 x4

(X1X1 + X2X2)

(X )
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Example: polynomial kernel

[ ]
@) e Y Q,
R .4 ° ole}
e ° O °® [ ) o 00 X22
o 0]
le) O

For x = (x1,x2) T € R?, let ®(x) = (x7,V2x1x0, x3) € R*:

K(x,X') = X2x2 + 2x1 X0 X + X3 x4

= ( 1X1 —|—X2X2)2

(X )

Exercise: show that <x.x’)§p is p.d. on X =RP for any d € N.
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Conversely: Kernels as inner products

Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set X if and only if there exists a Hilbert

space H and a mapping
o X —H

such that, for any x,x" in X:

K (x,x') = (®(x),® (x’)>H .

e
'Y
1
]
1
'Y
\
\
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In case of ...

Definitions

@ An inner product on an R-vector space H is a mapping
(f.g) — (f,g),, from H? to R that is bilinear, symmetric and such
that (f,f),, > 0 for all f € #\{0}.

@ A vector space endowed with an inner product is called pre-Hilbert.
1
It is endowed with a norm defined as || f ||3; = (f, )3,

e A Cauchy sequence (f,)n>0 is a sequence whose elements become
progressively arbitrarily close to each other:

lim  sup ||f, — fm|l =0.

N—+o00 n,m>N

@ A Hilbert space is a pre-Hilbert space complete for the norm ||.||%.
That is, any Cauchy sequence in H converges in H.

Completeness is necessary to keep “good” convergence properties of
Euclidean spaces in an infinite-dimensional context.
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Proof: finite case

@ Assume X = {x1,X2,...,xy} is finite of size N.

@ Any p.d. kernel K : X x X — R is entirely defined by the N x N
symmetric positive semidefinite matrix [K];; := K (x;, x;).

@ It can therefore be diagonalized on an orthonormal basis of

eigenvectors (ug,uy, ..., uy), with non-negative eigenvalues
OS)\l S S)\N. i.e.,

N
K (xi;%}) [Z Aujuy ] =D Mlurlifurl; = (@ (xi), @ (%)) gw
i I=1

)

with
VAr[ui]i
Cb(x,-) = . O
\/W[u/v];
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Proof: general case

@ Mercer (1909) for X = [a, b] C R (more generally X compact) and
K continuous.

o Kolmogorov (1941) for X countable.
@ Aronszajn (1944, 1950) for the general case.

We will go through the proof of the general case by introducing the
concept of Reproducing Kernel Hilbert Spaces (RKHS).
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Outline

0 Kernels and RKHS

@ Reproducing Kernel Hilbert Spaces (RKHS)

© Kernel tricks

© Kernel Methods: Supervised Learning
@ Kernel Methods: Unsupervised Learning
© The Kernel Jungle

@ Characterizing probabilities with kernels
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Functional spaces for machine learning

Before we go into formal details

o Among the Hilbert spaces H mentioned in Aronszjan’s theorem, we
will see that one of them, called RKHS, is of interest to us.

@ This is a space of functions from X to R.

@ In other words, each data point x in X will be represented by a
function ®(x) = Ky in H.
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Functional spaces for machine learning

Before we go into formal details

@ Among the Hilbert spaces H mentioned in Aronszjan’s theorem, we
will see that one of them, called RKHS, is of interest to us.

@ This is a space of functions from X to R.

@ In other words, each data point x in X will be represented by a
function ®(x) = Ky in H.

Example of functional mapping

o Consider X = R. We could decide to represent each scalar x in R as
a Gaussian function centered at x:

Ky e 2 ),

e What would be the corresponding H (if it exists)? What would be
the inner-product?
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Functional spaces for machine learning

What does it mean to map a data point to a function?

Ex: if x,y in R and K(x,y) = e 220 is the Gaussian kernel,

d(x):t— e a2 ()

O(y):t— e 220t

T v
e Data points are mapped to Gaussian functions living in a Hilbert

space H.

@ But H is much richer and contains much more than Gaussian
functions!

e Prediction functions f live in H: f(x) = (f, ®(x)).
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RKHS Definition

Definition

Let X be a set and H C R¥ be a class of functions forming a (real)
Hilbert space with inner product (.,.),,. The function K : X2 —Ris
called a reproducing kernel (r.k.) of H if

@ 7 contains all functions of the form

Vx e X, Ki:t— K(x,t).

@ For every x € X and f € H the reproducing property holds:

f(x)=(f,Kq)g -

If a r.k. exists, then H is called a reproducing kernel Hilbert space
(RKHS).
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RKHS: why do we care?

The principle of RKHS gives us a simple recipe to do machine learning:

@ Map data x in X to a high-dimensional Hilbert space H (the RKHS)

through a kernel mapping ® : X — H, with ®(x) = K.
@ In H, consider simple linear models f(x) = (f, ®(x))x.

o If X =RP, a linear function in ®(x) may be nonlinear in x.

e For instance, for supervised learning, given training data

(¥i,Xi)i=1,...,n, we may want to minimize the empirical risk.

n

1
in = Ly, f(xi FlI3.
;nel?gnz (i, £(xi)) + Allf 13,

i=1
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RKHS: why do we care?

The principle of RKHS gives us a simple recipe to do machine learning:

@ Map data x in X to a high-dimensional Hilbert space H (the RKHS)
through a kernel mapping ® : X — H, with ®(x) = K.

@ In H, consider simple linear models f(x) = (f, ®(x))x.
o If X =RP, a linear function in ®(x) may be nonlinear in x.
e For instance, for supervised learning, given training data

(¥i,Xi)i=1,...,n, we may want to minimize the empirical risk.

n

1
in = Ly, f(xi FlI3.
;nel?gnz (i, £(xi)) + Allf 13,

i=1

More formal details to come...
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An equivalent definition of RKHS

Theorem

The Hilbert space H C RY is a RKHS if and only if for any x € X, the
(linear) mapping:

F: H —-R
f —f(x)

is continuous.
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An equivalent definition of RKHS

Theorem

The Hilbert space H C RY is a RKHS if and only if for any x € X, the
(linear) mapping:

F: H —-R
f — f(x)

is continuous.

Corollary

Convergence in a RKHS implies pointwise convergence, i.e., if (f;),cn
converges to f in H, then (f, (x)),cy converges to f (x) for any x € X'
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Proof

If H is a RKHS then f — f (x) is continuous
If a r.k. K exists, then for any (x,f) € X x H:

| (x)| = [(f, Ka)g |
<\ F gl K Nl (Cauchy-Schwarz)
1
< | flla-K(x,%x)2,
because || Ky |2, = (Kx, Kx)2; = K (x,x). Therefore f € H — f (x) € R

is a continuous linear mapping. O

Since F is linear, it is indeed sufficient to show that f — 0 = f(x) — 0.
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Proof (Converse)

If £ — f(x) is continuous then H is a RKHS

Conversely, let us assume that for any x € X the linear form

f € H — f(x) is continuous.

Then by Riesz representation theorem (general property of Hilbert
spaces) there exists a unique gx € H such that:

f(x)=(f,8x) -

The function K (x,y) = gx (y) is then a r.k. for H. O
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Uniqueness of r.k. and RKHS

Theorem
o If H is a RKHS, then it has a unique r.k.

@ Conversely, a function K can be the r.k. of at most one RKHS.
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Uniqueness of r.k. and RKHS

Theorem
o If H is a RKHS, then it has a unique r.k.

@ Conversely, a function K can be the r.k. of at most one RKHS.

Consequence

This shows that we can talk of "the” kernel of a RKHS, or "the” RKHS
of a kernel.
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Proof

If a r.k. exists then it is unique
Let K and K’ be two r.k. of a RKHS #H. Then for any x € X:

” KX - K)i ”%—L = <KX - K)ﬁ? KX - K)1>H

(K — Ky K)ay — (K — Ky KLY
Kx (x) — K (x) — K (x) + Ky (x)
0.

H

This shows that Ky = K} as functions, i.e., Kx(y) = K](y) for any
y € X. In other words, K=K". O
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Proof

If a r.k. exists then it is unique
Let K and K’ be two r.k. of a RKHS #H. Then for any x € X:

” KX - K)i ”3—[ = <KX - K)ﬁ? KX - K;>H

(K — Ky K)ay — (K — Ky KLY
Kx (x) — K (x) — K (x) + Ky (x)
0.

H

This shows that Ky = K} as functions, i.e., Kx(y) = K](y) for any
y € X. In other words, K=K". O

The RKHS of a r.k. K is unique

Left as exercise.
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An important result

Theorem
A function K : X x X = R is p.d. if and only if it is a r.k.
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Proof

A rk. is p.d.
@ A rk. is symmetric because, for any (x,y) € X?:

K(x,y) = (K Ky)y = (Ky, Kx)yy = Ky, %)

@ It is p.d. because for any N € N,(x1,x2,...,xy) € XN, and
(a1,a2,...,ay) € RN:

N N
Z aiajK (xi, x;j) = Z aiaj (K, Ky )y

ij=1 ij=1

N
= > aik Il
i=1

>0. O
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Proof

A p.d. kernel is a r.k. (1/4)

o Let Hg be the vector subspace of RY spanned by the functions
{KX}XGX'
@ For any f, g € Ho, given by:

m n
f:ZaIKx,-, g:ijKyJ_,
i=1 j=1

let:
<f,g>%0 = E a,-ij(x,-./yj).
ij
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Proof

A p.d. kernel is a r.k. (2/4)

o (f,g)4, does not depend on the expansion of f and g because:

(Fr8)p, = > aig (xi) =Y _ bif ().
=i =

o This also shows that (.,.);, is a symmetric bilinear form.
o This also shows that for any x € X and f € Hp:

(f, K)oy, = f (%) -
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Proof

A p.d. kernel is a r.k. (3/4)

@ K is assumed to be p.d., therefore:

|fHH0 Zaaj (xi,x;) >0.
ij=1

In particular Cauchy-Schwarz is valid with (., .)q, .
o By Cauchy-Schwarz, we deduce that Vx € X:

N=

[ ()| = [ (F, Kby | < I F [l K (x,%)2

therefore || ||, =0 = f =0.
@ Hp is therefore a pre-Hilbert space endowed with the inner product
<., .>HO.
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Proof

A p.d. kernel is a r.k. (4/4)

o For any Cauchy sequence (f,)n>0 in (Ho, (., >'Ho) we note that:

V(x,m,m) € X XN, [ (X) = fo (X)| < || fin — o llpeo K (%, X)2 .

Therefore for any x the sequence (f,(x)),~o is Cauchy in R and has
therefore a limit. N

o If we add to Hp the functions defined as the pointwise limits of
Cauchy sequences, then the space becomes complete and is
therefore a Hilbert space, with K as r.k. (up to a few technicalities,
left as exercise). [
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Application: back to Aronzsajn’s theorem

Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping
P X H,

such that, for any x,x’ in X:

K (x,x') = (®(x),® (x’)>H .
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Proof of Aronzsajn’s theorem

o If K is p.d. over a set X then it is the r.k. of a Hilbert space
H CRY.
@ Let the mapping ¢ : X — H defined by:

Vxe X, &(x)= K.
@ By the reproducing property we have:

V(x,y) € X% (O(x), (y))yy = (Ku Ky)y = K (x.y). O
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Outline

© Kernels and RKHS

@ Examples

© Kernel tricks
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@ Characterizing probabilities with kernels
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The linear kernel

Take X = RY and the linear kernel:

K (X7Y) = <Xay>]Rd :

Theorem

The RKHS of the linear kernel is the set of linear functions of the form
fu (X) = (W,X)ps  for weR?,

endowed with the inner product
Yw,v € ]Rd, (g f;/>7.[ = (W, V)pd

and corresponding norm

yweR?, | fyllu = lwllz-
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Proof

The set H of functions described in the theorem is the dual of R?, hence

it is a Hilbert space:

H = {fw(x) = (W, X)pa 1 W € Rd} .

@ H contains all functions of the form Ky : x — (W, X)pa.

e For every x in RY and f,, in H,
fW(x) = <W’X>Rd = <fW7 KX)H .

H is thus the RKHS of the linear kernel.
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The polynomial kernel

Let us find the RKHS of the polynomial kernel of degree 2:

2
Vx,y €RY, K (x,y) = (X,y)5a = (xTy>
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The polynomial kernel

Let us find the RKHS of the polynomial kernel of degree 2:

2
Vx,y €RY, K (x,y) = (X,y)5a = (XTy)

First step: Look for an inner-product.
K (x,y) = trace <xTy xTy)
= trace <yTx xTy)
= trace (xxTny>

_ T yuT
—<XX ' YY >F7

where F is the Froebenius norm for matrices in RY*9. Note that we have

proven here that K is p.d.
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The polynomial kernel

Second step: propose a candidate RKHS.
We know that H contains all the functions

f(x) = Za,-K(x,-,x) = Za,- <X,'X,T,XXT>F — <Z aiXiX,T,XxT>

i F

Any symmetric matrix in R?*9 may be decomposed as Zia;x;x,T. Our
candidate RKHS H will be the set of quadratic functions

fs(x) = <S,xxT>F =x'Sx for Se 89

where 89%9 s the set of symmetric1 matrices in R9%9 endowed with

the inner-product (fs,, fs,);, = (S1, S2)-

"Why is it important?
43 /785



The polynomial kernel

Third step: check that the candidate is a Hilbert space.

This step is trivial in the present case since it is easy to see that H a
Euclidean space, isomorphic to S by ® : S — f5. Sometimes, things
are not so simple and we need to prove the completeness explicitly.

Fourth step: check that # is the RKHS.
Q H contains all the functions Ky : t — K(x,t) = (xxT,tt")_.
Q For all fgin H and x in X,

(x) = (ST = (o, gy = (o, Koy

Remark

All points x in X are mapped to a rank-one matrix xx', hence to a
function Kx = f, in H. However, most of points in H do not admit a
pre-image (why?).

Exercise: what is the RKHS of the general polynomial kernel?
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Combining kernels

Theorem
o If K1 and K5 are p.d. kernels, then:

K1 + Ko,
K1K2, and
cKi, for ¢ > 0,

are also p.d. kernels

o If (Ki);~; is a sequence of p.d. kernels that converges pointwisely to
a function K:

! 2 AN . /
V(X,X)EX, K(x,x)—nllﬁmooK,(x,x)7
then K is also a p.d. kernel.

Proof: for K1 K>, see next slide; otherwise, left as exercise
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Proof for K1 K5 is p.d.

Proof.

Consider n points in X and the corresponding n x n p.s.d. kernel
matrices K; and K,. As p.s.d. matrices, they admit factorizations
K;i =X"X and K = Y'TY. Then,

(K] = [Ki]y[K2];
— trace <(X;TXJ)(YJ'TYi))
= wrace ((yx] )y )
= <Xiyl'T>XJ'ij>F'
= (21,2}

where the x;'s and the y;’s are the columns of X and Y, respectively and
z; = vec(x,-y,-T). Thus, K is p.s.d. and K = K1 K> is a p.d. kernel. O
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Examples

Theorem

If K is a kernel, then € is a kernel too.
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Examples

Theorem

If K is a kernel, then X is a kernel too.
Proof: )
n AV
eK(x,x/) — lim § : K(X,X)

n—+o0 i

=l
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Quizz : which of the following are p.d. kernels?

o X =(-1,1), K(x,x)= 2

1—xx’
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Quizz : which of the following are p.d. kernels?

o X =(-1,1), K(x,x)= 2

1—xx’

o X =N, K(x,x)=2H
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Quizz : which of the following are p.d. kernels?

o X=(-1,1), K(x,x)= 1_1XX,

o X =N, K(x,x)=2H
o X =N, K(x,x')=2%
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Quizz : which of the following are p.d. kernels?

X =(-11), K(xx)= 1_1XX,
X =N, K(x,x)=2+

X=N, K(x,x)=2%

X =Ry, K(x,x")=log(1+ xx)
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Quizz : which of the following are p.d. kernels?

X =(-11), K(xx)=1s
X =N, K(x,x)=2+x

X=N, K(x,x)=2%

X =Ry, K(x,x")=log(1+ xx)
X =R, K(x,x)=exp(—|x—x?)
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Quizz : which of the following are p.d. kernels?

X =(-11), K(xx)=1s
X =N, K(x,x)=2+x

X=N, K(x,x)=2%

X =Ry, K(x,x")=log(1+ xx)
X =R, K(x,x)=exp(—|x—x?)
X =R, K(x,x")=cos(x+x')
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Quizz : which of the following are p.d. kernels?

1
1,1), K(x,xX)=1"%
, K (X,X/) — 2x+xl
K (x,x") =2

A= (
X =N
X =N,
X =Ry, K(x,x")=log(1+ xx)
X =R,
X =R,
X =R,

K( x') = exp (—|x — x'[?)
K (x,x") = cos (x + x')
K(

x") = cos (x — x')

e 6 6 6 o o
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Quizz : which of the following are p.d. kernels?

o X=(-1,1), K(x,x)= 1_1XX,

o X =N, K(x,x)=2H

o X =N, K(x,x')=2%

o XY =Ry, K(x,x')=log(l+ xx)
o XY =R, K(x,x')=exp(—|x—x?)
e XY =R, K(x,x")=cos(x+x')

e XY =R, K(x,x')=cos(x—x)

e XY =R;, K(x,x')=min(x,x")
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Quizz : which of the following are p.d. kernels?

o X =(-1L1), K(xx)=1i%0

o X =N, K(x,x)=2H

o X =N, K(x,x')=2%

o XY =Ry, K(x,x')=log(l+ xx)
o XY =R, K(x,x')=exp(—|x—x?)
e XY =R, K(x,x")=cos(x+x')

e XY =R, K(x,x')=cos(x—x)

e XY =R;, K(x,x')=min(x,x’

e XY =R;, Ki(x,x")=max(x,x")
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Quizz : which of the following are p.d. kernels?

1), KX = =
K (x,x) = 2xt¥
K (x,x") =2

K (x,x") = log (1 + xx')
( x') = exp (=[x —x|?)
x") = cos (x + x’

I |
Az 27
£ =

I
= ® W
xxx

,—\,-\

)
x") = cos (x — x')
x')

/

I

=
+

x

(X x') = min(x,

K (x,x") = max(x, x")

R R R R R R R ®R® &
I
b

®© ©6 6 66 66 o o o o

I
A =
b

K (x,x") = min(x, x")/ max(x, x")
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Quizz : which of the following are p.d. kernels?

o X=(-1,1), K(x,X)= 125
=N, K(x,x)=2t
=N, K(x,x)=2

I
]
T

K (x,x") = log (1 + xx')
K (x,x") =exp (—|x — X'|?)
K (x,x") = cos (x + x')

K (x,x") = cos (x — x")

K (x,x") = min(x, x")

K (x,x") = max(x, x")

[
A =B ="
PR

K (x,x") = min(x, x")/ max(x, x")
K (x,x") = GCD (x,x’)

R R R ERRRRRR X
I
= ® W

®© © 6 6 6 6 o o o o

I
2
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Quizz : which of the following are p.d. kernels?

°o X =(-11), K(xx)=1x

o X =N, K(x,x)=2H

o X =N, K(x,x')=2%

o XY =Ry, K(x,x')=log(l+ xx)
o XY =R, K(x,x')=exp(—|x—x?)
e XY =R, K(x,x")=cos(x+x')

e XY =R, K(x,x')=cos(x—x)

e XY =R;, K(x,x')=min(x,x")

e XY =R;, Ki(x,x")=max(x,x")

e X =Ry, K(x,x")=min(x,x")/ max(x, x")
e X=N, K(x,x')= GCD(x,x)

e X¥=N, K(x,x')=LCM(x,x")
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Quizz :

®© 6 6 6 6 6 6 66 o o o o

R R R R R ®R®R R R R ®® ®

which of the following are p.d. kernels?

VZZ"*

]
+

R

7
_I_

=
_l’_

=
_l’_

Z Z 2

1), KX = =
K (x,x) = 2xt¥

K (x,x") =2

K (x,x") = log (1 + xx')
K (x,x") =exp (—|x — X'|?)
K (x,x") = cos (x + x')
K (x,x") = cos (x — x")
K (x,x') = min(x, X
K (x,x") = max(x, x")
K (

x,x") = min(x, x")/ max(x, x")

K (x,x") = GCD (x,x’)
K (x,x") = LCM (x,x")
K(

x,x") = GCD (x,x") /LCM (x, x)
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Outline

© Kernels and RKHS

@ Smoothness functional
© Kernel tricks
© Kernel Methods: Supervised Learning
@ Kernel Methods: Unsupervised Learning
© The Kernel Jungle

@ Characterizing probabilities with kernels
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Remember the RKHS of the linear kernel

Kiin (X, X’) =x'x .
f(x) =w'x,
1 1l = [[wllz2

IIFl=2 - 1IFl=1 [IF]I=0.5
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Smoothness functional

A simple inequality
@ By Cauchy-Schwarz we have, for any function f € H and any two
points x,x’ € X:
]f(x)—f(x’) ‘ = [(f, Kx — Kx') g |
< | Fllse x 1| K — K 1
= || lla % dic (x,%) -
@ The norm of a function in the RKHS controls how fast the function

varies over X with respect to the geometry defined by the kernel
(Lipschitz with constant || f ||%).

Important message

Small norm = slow variations.
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Kernels and RKHS: Summary

@ P.d. kernels can be thought of as inner product after embedding the
data space X in some Hilbert space. As such a p.d. kernel defines a
metric on X.

@ A realization of this embedding is the RKHS, valid without
restriction on the space X nor on the kernel.

@ The RKHS is a space of functions over X'. The norm of a function
in the RKHS is related to its degree of smoothness w.r.t. the metric
defined by the kernel on X.

@ We will now see some applications of kernels and RKHS in statistics,
before coming back to the problem of choosing (and eventually
designing) the kernel.
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Part 2

Kernel tricks
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Motivations

Two theoretical results underpin a family of powerful algorithms for data
analysis using p.d. kernels, collectively known as kernel methods:

@ The kernel trick, based on the representation of p.d. kernels as inner
products;

@ The representer theorem, based on some properties of the
regularization functional defined by the RKHS norm.
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Motivation from supervised learning

For instance, in supervised learning, the goal is to learn a prediction
function f : X — ) given labeled training data (x;, y;)i=1,.., with x;
in X, and y; in ):

o1
min —
feF n

——

regularization

> Ly f(xi) +  AQ(F)
i=1

TV
empirical risk, data fit

Fal
o B

(Vapnik, 1995)...
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Motivation from supervised learning

For instance, in supervised learning, the goal is to learn a prediction
function f : X — Y given labeled training data (x;, yi)i=1,..n With x;
in X, and y; in ):

o1
min —
feEF n

; Ly, f(xi)) +  AQ(F)

regularization

empirical risk, data fit

The labels y; are, for instance, in
e {—1,+1} for binary classification problems.
e {1,...,K} for multi-class classification problems.
@ R for regression problems.

e R¥ for multivariate regression problems.
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Motivation from supervised learning

For instance, in supervised learning, the goal is to learn a prediction
function f : X — Y given labeled training data (x;, yi)i=1,..n With x;
in X, and y; in ):

o1
min —
feEF n

; Ly, f(xi)) +  AQ(F)

regularization

empirical risk, data fit

Example with linear models: logistic regression, etc.
@ assume there exists a linear relation between y and features x in RP.
o f(x) =w'x+ b is parametrized by w, b in RP*1;
@ L is often a convex loss function;

e Q(f) is often the squared £>-norm |lw/||%.
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Motivation from supervised learning

1!7
in =Y L(y;, f(x AIFII3,
min — > L(yi, f(xi) + AlIfII%

=

@ Kernel methods allow you to map data x in X to a Hilbert space
and work with linear forms:

O X H  and  F(x) = (D(x),
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Motivation from supervised learning

1 n
in =Y Ly, f(x A|FIZ,.
iy 20 L () + Al
First purpose: embed data in a vectorial space where

e many geometrical operations exist (angle computation, projection
on linear subspaces, definition of barycenters....).

@ one may learn potentially rich infinite-dimensional models.

@ regularization is natural and theoretically grounded.
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Motivation from supervised learning

1 n
in =Y Ly, f(x A|FIZ,.
min n;_ (i, F(xi)) + Allf[l3,
First purpose: embed data in a vectorial space where

e many geometrical operations exist (angle computation, projection
on linear subspaces, definition of barycenters....).

@ one may learn potentially rich infinite-dimensional models.

@ regularization is natural and theoretically grounded.

The principle is generic and does not assume anything about the nature
of the set X' (vectors, sets, graphs, sequences).
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Motivation from supervised learning

Second purpose: unhappy with the current Euclidean structure?

e lift data to a higher-dimensional space with nicer properties (e.g.,
linear separability, clustering structure).

@ then, the linear form f(x) = (®(x), f)3 in H may correspond to a
non-linear model in X.

x1 X12
o)
0©_ o0
oo ©

° 0%
® 00

°
e °® 0 00 x22
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Outline

© Kernels and RKHS

9 Kernel tricks
@ The kernel trick

© Kernel Methods: Supervised Learning
@ Kernel Methods: Unsupervised Learning
© The Kernel Jungle

@ Characterizing probabilities with kernels

ﬂ Open Problems and Research Topics
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The kernel trick

Proposition

Any algorithm to process finite-dimensional vectors that can be expressed
only in terms of pairwise inner products can be applied to potentially
infinite-dimensional vectors in the feature space of a p.d. kernel by
replacing each inner product evaluation by a kernel evaluation.

Remarks:

@ The proof of this proposition is trivial, because the kernel is exactly
the inner product in the feature space.

@ This trick has huge practical applications.

@ Vectors in the feature space are only manipulated implicitly, through
pairwise inner products.
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Example 1: computing distances in the feature space

di (x1,%2)% = || ® (x1) —  (x2) |I3,

= (P (x1) = ®(x2) , P (x1) — P (x2))

= (P (x1), ® (x1))5 + (P (x2), P (x2))3, — 2{(P (x1), P (x2))3
di(x1,%2)? = K(x1,x1) + K(x2,%2) — 2K(x1,X2)
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Distance for the Gaussian kernel

@ The Gaussian kernel with
bandwidth o on R is:

l[x=y I
K(x,y)=e" 7
o K(x,x)=1=|®(x) |3, soall
points are on the unit sphere in the
feature space.
@ The distance between the images

of two points x and y in the feature
space is given by:

d (x,y) = \/2 [1 _ e'?jf]

d(x.y)

0.4 0.8 1.2

0.0

[Ix=yll
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Example 2: distance between a point and a set

Problem
o Let S = (x1,---,x,) be a finite set of points in X.

@ How to define and compute the similarity between any point x in X
and the set §7
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Example 2: distance between a point and a set

Problem
o Let S = (x1,---,x,) be a finite set of points in X.

@ How to define and compute the similarity between any point x in X
and the set §?

A solution:
@ Map all points to the feature space.
@ Summarize S by the barycenter of the points:

wo= %ZCD(X,') .
i=1

@ Define the distance between x and S by:

dc (x,8) = [| @ (x) — g [l -
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Computation

¢
— . &
om
o
1 n
dk (x,8) = ||®(x) = = D> d(x;)
n =1 H
n 1 n n
= | K(x,x) — ;ZK(X Xj) + ?ZZK(X, X;)
i=1 i=1 j=1
Remark

The barycentre p only exists in the feature space in general: it does not

necessarily have a pre-image xy, such that ¢ (x“) = L.
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1D illustration

o S={2,3}
e Plot f(x) = d(x,S)

d(xs)

\VAVS

d(x.S)
)

(x=y)? (x=y)?
K(X,y):X)/. K(X’y):e_ 2oy2 . K(x7y):e_ 2a)é .
(linear) with o = 1. with o = 0.2.
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1D illustration

o §=1{2,3}
e Plot f(x) = d(x,S)

d(x‘S)A
d(x‘S)‘

K _ _ Gy b=y
(x,y) = xy. K(x,y)=e 22 . K(x,y)=e 27 .
(linear) with o = 1. with o = 0.2,

Remarks
o for the linear kernel, H =R, = 2.5 and d(x,S) = |x — pl.

o for the Gaussian kernel d(x,S) \/C 2 =31 K(xi, x).
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2D illustration

o S={(1,1),(1,2),(2,2)'}
e Plot f(x) = d(x,S)

/

o/
)
(
|

. 4 o\ A >

\
\

\\\

K B _(x=y)?

(X,y) = Xy. K (x,y) =€ 207 .
(linear) with o = 1.

_ (x—y)?

Kxy)=e 2.

with ¢ = 0.2.
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2D illustration

o S={(1,1),(1,2),(2,2)'}
e Plot f(x) = d(x,S)

/

/

o [
(
(

4 4 f

¢ g \
\

\

\

N ,/
K _ ey _ Gey)?
(x,y) = xy. K(x,y)=e 27 . K(x,y)=e 27 .
(linear) with o = 1. with o = 0.2,

Remark

@ as before, the barycenter p in H (which is a single point in H) may
carry a lot of information about the training data.
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Basic application in discrimination

o S1={(1,1),(1,2)} and S» = {(1,3),(2,2)'}
o Plot f(x) = d (x,81)* — d (x,S2)?

N
i

K . _ (x=y)? _ (x=y)?
(x,y) = xy. K(x,y) =e 27 . K(x,y) =e 27 .
(linear) with o = 1. with o = 0.2.
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Example 3: Centering data in the feature space

Problem
o Let S = (x1,---,X,) be a finite set of points in X endowed with a
p.d. kernel K. Let K be their n x n Gram matrix: [K]; = K (x;,x;) .

o Let p=1/n>""; ®(x/) their barycenter, and u; = ® (x;) — p for

i=1,...,n be centered data in H.
@ How to compute the centered Gram matrix [K];; = (uj, u;),,?
¢
T F
o A
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Computation
@ A direct computation gives, for 0 < /,j < n:

KFj = (O (xi) — 1, @ (x;) — )y

= (P (xi), P (x)))y — (1, P (xi) + & (Xj)> + (e, ) gy

:K;J—%Z(K,kJrKJk 2E:Kk/

n
k=1 k,1=1
@ This can be rewritten in matricial form:
K °=K—-UK-KU+UKU=(I-U)K(I-U),

where U; j =1/nfor 1 <i,j < n.
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Kernel trick Summary

@ The kernel trick is a trivial statement with important applications.

@ It can be used to obtain nonlinear versions of well-known linear
algorithms, e.g., by replacing the classical inner product by a
Gaussian kernel.

@ It can be used to apply classical algorithms to non vectorial data
(e.g., strings, graphs) by again replacing the classical inner product
by a valid kernel for the data.

o It allows in some cases to embed the initial space to a larger feature

space and involve points in the feature space with no pre-image
(e.g., barycenter).
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Outline

© Kernels and RKHS

9 Kernel tricks

@ The representer theorem
© Kernel Methods: Supervised Learning
@ Kernel Methods: Unsupervised Learning
© The Kernel Jungle
@ Characterizing probabilities with kernels

ﬂ Open Problems and Research Topics
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Motivation

@ An RKHS is a space of (potentially nonlinear) functions, and || f ||

measures the smoothness of f.

o Given a set of data (x; € X, y; € R)j=1..p, a natural way to

estimate a regression function f : X — R is to solve something like:

feH n“4 ——"

regularization

1
min ,Zf(y,-,f(x,-)) + )‘HfH%-l
i=1

empirical risk, data fit

for a loss function £ such as £(y, t) = (y — t).

@ How to solve in practice this problem, potentially in infinite
dimension?

(1)
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The Theorem

Representer Theorem

@ Let X be a set endowed with a p.d. kernel K, H the corresponding
RKHS, and § = {x1,--- ,x,} C & a finite set of points in X.

o Let W :R™1! — R be a function of n+ 1 variables, strictly
increasing with respect to the last variable.

@ Then, any solution to the optimization problem:

min W (7 (x0) - £ (xn) || F 30
admits a representation of the form:

n

n
Vx € X, f(x):ZaK Xj, X Zoz,KX,

i=1 i=1
In other words, the solution lives in a finite-dimensional subspace:

f € Span(Kx,, - - -, Kx,)-
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Proof (1/2)

o Let £(f) be the functional that is minimized in the statement of the
representer theorem, and Hs the linear span in H of the vectors Kj;:

Hsz{fEH f ZaK X,, al, ,Oén)ERn}.

@ Hgs is a finite-dimensional subspace, therefore any function f € H
can be uniquely decomposed as:

f:f8+fJ_7

with fs € Hs and f| L Hs (by orthogonal projection).
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Proof (2/2)
@ H being a RKHS it holds that:
Vi=1,---,n fL(x;)=(fL,Kq)u =0,
because Ky, = K (x;,.) € Hs and f| L Hs, therefore:
Vi=1,---,n,  f(xi)="fs(xi) .
@ Pythagoras’ theorem in H then shows that:
IF 113 =1 fs 13+ 11 o113, -

@ As a consequence, £ (f) > £(fs) , with equality if and only if
|| fL || = 0. The minimum of W is therefore necessarily in Hs.
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Remarks

Often the function W has the form:

V(F(xa)s - F(xn)s [ F i) = e (F(xa), -5 £ (xn)) + AQ( F )

where ¢(.) measures the "fit" of f to a given problem (regression,
classification, dimension reduction, ...) and € is strictly increasing. This
formulation has two important consequences:

@ Theoretically, the minimization will enforce the norm || f || to be
“small”, which can be beneficial by ensuring a sufficient level of
smoothness for the solution (regularization effect).

@ Practically, we know by the representer theorem that the solution
lives in a subspace of dimension n, which can lead to efficient
algorithms although the RKHS itself can be of infinite dimension.
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Practical use of the representer theorem (1/2)

@ When the representer theorem holds, we know that we can look for

a solution of the form

n
= Za;K(x;,x) , for some a € R".

@ Forany j=1,...,n, we have

= Za,’K(X,',Xj) = [Ka]j.

i=1
@ Furthermore,

2

—E Eaaj (xi,x;)

H  i=1 j=1

115 =

n
g oKy,
i=1

a'Ka.
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Practical use of the representer theorem (2/2)

@ Therefore, a problem of the form

,rcr;m\ll(f(m) : ,f(x,,),HfH%{)

is equivalent to the following n-dimensional optimization problem:

min W ([Ka]l, ,[Ka],,,aTKa) .
QeR

@ This problem can usually be solved analytically or by numerical
methods; we will see many examples in the next sections.
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Remarks

Dual interpretations of kernel methods
Most kernel methods have two complementary interpretations:
@ A geometric interpretation in the feature space, thanks to the kernel

trick. Even when the feature space is “large”, most kernel methods
work in the linear span of the embeddings of the points available.

@ A functional interpretation, often as an optimization problem over
(subsets of) the RKHS associated to the kernel.

The representer theorem has important consequences, but it is in fact
rather trivial. We are looking for a function f in H such that for all x
in X, f(x) = (Kx, f);,. The part f that is orthogonal to the Ky,'s is
thus “useless” to explain the training data.
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Part 3

Kernel Methods

Supervised Learning



Supervised learning

Definition
Given:
o X, a space of inputs,
@ ), a space of outputs,
® Sp=(Xi,¥i)i=1,n @ training set of (input,output) pairs,
the supervised learning problem is to estimate a function h: X — ) to
predict the output for any future input.
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Supervised learning

Definition
Given:
o X, a space of inputs,
@ ), a space of outputs,
® Sp=(Xi,¥i)i=1,n @ training set of (input,output) pairs,
the supervised learning problem is to estimate a function h: X — ) to
predict the output for any future input.

Depending on the nature of the output, this covers:
@ Regression when Y = R;
o Classification when ) = {—1,1} or any set of two labels;

@ Structured output regression or classification when ) is more
general.
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Example: regression

Task: predict the capacity of a small molecule to inhibit a drug target

X = set of molecular structures (graphs?)

Y=R
QQ@@@

l
“c c@% @* @b—
(‘:Q C:Q OQ
@“@- é“ﬂ @

8 88 87 88
IC55= 33 1nM 1C5g= B8xBnM ICsy= 95481M ICs5= 2.0¢1nM
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Example: classification

Task: recognize if an image is a dog or a cat
X = set of images (R9)

Y = {cat,dog}
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Example: classification

Task: recognize if an image is a dog or a cat
X = set of images (R9)

Y = {cat,dog}
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Example: structured output

Task: translate from Japanese to French
X = finite-length strings of japanese characters
Y = finite-length strings of french characters

<

# translate.google.fr (@] o
Google o0
Traduction Désactiver la traduction instantanée o
Anglais Frangais Arabe Japonais - détecté ~ LTS Frangais Anglais Arabe ~
BHEANSEE S ¥ Méme les singes tombent des

arbres
A . gsoo0 D0 < ’
Sarumokikaraochiru
A propos de Google Traduction ~ Communauté  Mobile G+ E

A propos de Google Confidentialité et conditions d'utilisation Aide Ji) Envoyer des commentaires
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Supervised learning with kernels: general principles

© Express h: X — Y using a real-valued function f : Z — R:
e regression )Y = R:
h(x) =f(x) with f: X >R (Z=2X)
o classification Y = {—1,1}:
h(x) =sign(f(x)) with f: X >R (Z=2X)
e structured output:
h(x) = argryea)%(f(x,y) with f: XA xY >R (Z2=Xx%x))

@ Define an empirical risk function R,(f) to assess how "good" a

candidate function f is on the training set S, typically the average

of a loss:

Ralf) = 32 0(F(x).y)
i=1

© Define a p.d. kernel on Z and solve

in  Ry(f in Ry () + All £ |3
ez o DA

85 /785



Remarks

1n
in =Y 2(f(x),yi NRAE
min n; (F(xi),yi) + A3

regularization

empirical risk, data fit

o Regularization is important, particularly in high dimension, to
prevent overfitting

@ When Z = R? and K is the linear kernel, f = f,, is a linear model
and the regularization is ||w||?

@ Using more general spaces Z and kernels K allows to

o learn non-linear functions over a functional space endowed with a
natural regularization (remember, small norm in RKHS = "smooth™)
o learn functions over non-vectorial data, such as strings and graphs

We will now see a few methods in more details
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Outline
© Kernels and RKHS
9 Kernel tricks

© Kernel Methods: Supervised Learning
@ Kernel ridge regression

@ Kernel Methods: Unsupervised Learning
© The Kernel Jungle

@ Characterizing probabilities with kernels
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Regression

Setup

@ X set of inputs

@ Y = R real-valued outputs

© Sp=(Xi,¥i)i=1,..n € (X x R)" a training set of n pairs
@ Goal = find a function f : X — R to predict y by f (x)
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Regression

Setup
@ X set of inputs
@ Y = R real-valued outputs
© Sp=(Xi,¥i)i=1,..n € (X x R)" a training set of n pairs
@ Goal = find a function f : X — R to predict y by f (x)

88 /785



Least-square regression over a general functional space

o Let us quantify the error if f predicts f (x) instead of y by the
squared error:

L(F(x),y) = (y — f (x))?
o Fix a set of functions H.

o Least-square regression amounts to finding the function in H with
the smallest empirical risk, called in this case the mean squared error
(MSE):

n

R 1 5
f € argmin— yi — (%
gmin 300~ £ (6)

@ Issues: unstable (especially in large dimensions), overfitting if H is
too “large”.
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Kernel ridge regression (KRR)

@ Let us now consider a RKHS 7, associated to a p.d. kernel K on X.

@ KRR is obtained by regularizing the MSE criterion by the RKHS

norm:
n

~ .1
F=argmin=_ 3" (v — £ (x)))2 + Al |, @
fen N°—

o Ist effect = prevent overfitting by penalizing non-smooth functions.
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Kernel ridge regression (KRR)

Let us now consider a RKHS #, associated to a p.d. kernel K on X.
@ KRR is obtained by regularizing the MSE criterion by the RKHS

norm: .
~ 1
f=argmin=>" (i — f (x)* + Al | (2)
fen N°—
o Ist effect = prevent overfitting by penalizing non-smooth functions.

By the representer theorem, any solution of (2) can be expanded as

F(x) =) aiK (xi,x).
i=1

2nd effect = simplifying the solution.
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Solving KRR

Lety:(yl,...,y,,)TE]R”
Let o = (a1, ...,0,) €R?

°
°
o Let K be the n x n Gram matrix: K;; = K (x;, x;)
°

We can then write:

(z?(xl),...,f(xn))T:Ka

The following holds as usual:
1713, = a'Ka

o The KRR problem (2) is therefore equivalent to:

1
argmin= (Ka—y)' (Ka —y) + Aa'Ka
oeRrr N

91 /785



Solving KRR

1
argmin= (Ka—y)" (Ka—y) + Aa' Ka
oeRrr N

@ This is a convex and differentiable function of . Its minimum can
therefore be found by setting the gradient in a to zero:

Oz%K(Ka—y)+2)\Ka
=K[(K+ Anl)a —y]

e For A > 0, K+ Anl is invertible (because K is positive semidefinite)
so one solution is to take:

a=(K+xnl)ly.
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Example (KRR with Gaussian RBF kernel)
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Example (KRR with Gaussian RBF kernel)

lambda = 1000
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Example (KRR with Gaussian RBF kernel)

lambda = 100
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Example (KRR with Gaussian RBF kernel)

lambda = 10
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Example (KRR with Gaussian RBF kernel)

lambda =1
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Example (KRR with Gaussian RBF kernel)

lambda = 0.1
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Example (KRR with Gaussian RBF kernel)

lambda = 0.01
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Example (KRR with Gaussian RBF kernel)

lambda = 0.001

93 /785



Example (KRR with Gaussian RBF kernel)

lambda = 0.0001

93 /785



Example (KRR with Gaussian RBF kernel)

lambda = 0.00001
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Example (KRR with Gaussian RBF kernel)

lambda = 0.000001
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Example (KRR with Gaussian RBF kernel)

lambda = 0.0000001
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Remark: uniqueness of the solution

Let us find all a's that solve
KI(K+Anl)a—y]=0

@ K being a symmetric matrix, it can be diagonalized in an
orthonormal basis and Ker(K) L Im(K).

o In this basis we see that (K + Anl)™* leaves Im(K) and Ker(K)
invariant.

@ The problem is therefore equivalent to:

(K+ Anl)a —y € Ker(K)
sa— (K+ )ty e Ker(K)
sa=(K+Anl) "ty + e, with Ke = 0.
o However, if &' = a + € with Ke = 0, then:
IF=f|3=(a—a) Ka—a') =0,

therefore f = f’. KRR has a unique solution f € H, which can
possibly be expressed by several a's if K is singular.
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Remark: link with "standard” ridge regression

Take X = RY and the linear kernel K (x,x’) = x"x/
Let X = (x1,...,X,) " the n x d data matrix
The kernel matrix is then K = XXT

°
°
°
@ The function learned by KRR in that case is linear:

frR (X) = WirrX

with

n
1
wirr = > axi =X a=X" (xxT n )\nl) y
i=1
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Remark: link with "standard” ridge regression

@ On the other hand, the RKHS is the set of linear functions
f (x) = w'x and the RKHS norm is || f ||y = || w]||

@ We can therefore directly rewrite the original KRR problem (2) as

1¢ T )2 2
arg min — i — W X +Allw
s 23 ()

1=

1
=arg min = (y —Xw)' (y — Xw) + \w'w
weRd n

@ Setting the gradient to O gives the solution:
T LT
WgRR = (X X+>\nl> X'y

o Oups, looks different from wxrg = X (XXT + )\nl)f1 y.?
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Remark: link with "standard” ridge regression

Matrix inversion lemma

For any matrices B and C, and 7 > 0 the following holds (when it makes
sense):
B(CB+-1)"'=(BC+~1)'B

We deduce that (of course...):

WRR = (xTx n )\nl)il XTy=xT (xxT + Anl)il Yy = WKkrR

/

-~

d‘><rd nxn
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Remark: link with "standard” ridge regression

Matrix inversion lemma
For any matrices B and C, and 7 > 0 the following holds (when it makes

sense):
B(CB+-1)"'=(BC+~1)'B

We deduce that (of course...):

WRR = (xTx n )\nl)il XTy=xT (xxT + Anl)il Yy = WKkrR

/

-~

d‘><rd nxn

Computationally, inverting the matrix is the expensive part, which
suggest to implement:

e KRR when d > n (high dimension)
@ RR when d < n (many points)
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Robust regression

o The squared error £(t,y) = (t — y)? is arbitrary and sensitive to
outliers
@ Many other loss functions exist for regression, e.g.:

—square
—¢—insensitive
—Huber

y—f(x)

@ Any loss function leads to a valid kernel method, which is usually
solved by numerical optimization as there is usually no analytical
solution beyond the squared error.
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Weighted regression

o Given weights Wy, ..., W, € R, a variant of ridge regression is to
weight differently the error at different points:

1 2 2
arg min— Wi (y; — f(x;))"+ M|
gmine 3 W0 £ ()" + A1 I

@ By the representer theorem the solution is f(x) = >_7 ; ;K (xj,X)
where a solves, with W = diag (W4, ..., W,):

1
argmin= (Ka —y)" W (Ka —y) + A\a' Ka
aeRrr N
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Weighted regression

@ Setting the gradient to zero gives

2
0= - (KWKa — KWy) + 2 \Ka
2
— ZKw? [(w%KW% n nAI) W 3o — W%y}
n
@ A solution is therefore given by
1 1 1 1
<W5KW5 + n)\l) W2 — Wiy =0

therefore .
a = Wi (W%KW% 4 n)\l) Wiy
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Outline
© Kernels and RKHS
9 Kernel tricks

© Kernel Methods: Supervised Learning

o Kernel logistic regression

@ Kernel Methods: Unsupervised Learning
© The Kernel Jungle

@ Characterizing probabilities with kernels
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Binary classification

Setup
@ X set of inputs
e Y = {—1,1} binary outputs
© Sp= (X, ¥i)iz1,..n € (X x Y)" a training set of n pairs
@ Goal = find a function f : X — R to predict y by sign(f (x))

L
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Binary classification

Setup
@ X set of inputs
e Y = {—1,1} binary outputs
© Sp= (X, ¥i)iz1,..n € (X x Y)" a training set of n pairs
@ Goal = find a function f : X — R to predict y by sign(f (x))

m
R
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The 0/1 loss

@ The 0/1 loss measures if a prediction is correct or not:

0 if y = sign(f(x))
1 otherwise.

to/1 (F(x),y)) = 1(yf(x) <0) = {

@ It is then tempting to learn f by solving:

— 14 f Al F
?"GLPMZ o/t (F(xi),yi)+ All I3,

regularization

misclassification rate

@ However:
e The problem is non-smooth, and typically NP-hard to solve
o The regularization has no effect since the 0/1 loss is invariant by
scaling of f
o In fact, no function achieves the minimum when A > 0 (why?)
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The logistic loss

@ An alternative is to define a probabilistic model of y parametrized by

f(x), e.g.:
e (-L1}, ply|f(x) !

= m = o (yf(x))

I

I

|

- sigma(u)

|1 sigma(-u)

I

00 02 04 06 08 10

|

T T T
-5 0 5

@ The logistic loss is the negative conditional likelihood:

ZIogistic (f(X),y) =—1In p(y| f (x)) = In (]_ + e—yf(x)>
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Kernel logistic regression (KLR)

- 1 A
f=arg mm; Zf/ogistic (f(xi),yi) + 5” f ”%{

fen N=
n
=arg min1 Z In (1 + efy"f(x")) + iH f %
fen N°— 2

@ Can be interpreted as a regularized conditional maximum likelihood
estimator

@ No explicit solution, but smooth convex optimization problem that
can be solved numerically
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Solving KLR
@ By the representer theorem, any solution of KLR can be expanded as

F(x) =) aiK (xi,x)
i=1

and as always we have:

~ T ~
(f (x1),..-, f(xn)> —Ka and |73 =a'Ka

@ To find o we therefore need to solve:

1 — A

: ,E | (1 —yi[Ka]i) 2aTK

orpelﬂrzgnn_ln te —|—2a «
=
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Technical facts

2 0 - 7 —— logistic loss(u)
S1— sigma(u) <
pa —— sigma(-u)
Sigmoid: Logistic loss:
e o(u)= 1+1 ® Cogistic(u) =In(14+e7")
o o(—u)=1-0(uv) © llogistic(t) = —o(—u)
o o'(u) =o(u)o(—u) > ® Cpgistic(u) = o(u)o(—u) >0
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Back to KLR

_ 1 < A
Jmin, J(a) = - ;elogistic (vilKa];) + §OtTKOL

This is a smooth convex optimization problem, that can be solved by
many numerical methods. Let us explicit one of them, Newton's method,
which iteratively approximates J by a quadratic function and solves the
quadratic problem.

The quadratic approximation near a point « is the function:

Jo(er) = J(ap) + (a — )" VJ (o) + % (o —ap)" V2J (o) (@ — exg)

Let us compute the different terms...
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Computing the quadratic approximation

o 1<,
a = E Zélogistic (yl[Ka]l)lelJ + )\[KQ]J
J i=1

P,-(Va)

therefore )
Vi) = EKP (a)y + Ko

where P (a) = diag (P1(e), . . ., Pp(av)).

Z Klog/stlc y,[Ka],-) )/iKij}/iKil + )\KJ'/

wi(a)

8041804,

therefore 1
V2J(a) = —KW (a) K + K
n

where W (o) = diag (Wi (), ..., Wy(a)).
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Computing the quadratic approximation

Jo(@) = J(exo) + (o — ag) T VI (exg) + % (o — )T V2J (axo) (e — axo)

Terms that depend on «, with P = P (ap) and W = W (ay):
o a'VJ(ag) =LaTKPy + Aa"Kag
o Ja'V2J(ap)a = a ' KWKa + 3aKa
o —a'V2J(ag)ag = —%aTKWKaO —daKag

Putting it all together:

2 1
2Jg(ct) = —=a' KW (Kag — W' Py) +;aTKWKa +da'Ka+C

n

~~
=z

1
:;(Ka—z)TW(Ka—z)qL)\aTKaJrC

This is a standard weighted kernel ridge regression (WKRR) problem!
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Solving KLR by IRLS

In summary, one way to solve KLR is to iteratively solve a WKRR
problem until convergence:

ot — solveWKRR(K, W¢, z%)

where we update W* and z' from a' as follows ( for i = 1,...,n):
@ m; < [Kat],-
° Pit A g;ogistic(yimi) = —o(—yimj)
o W« U gistic(vimi) = o(mi)o(—m;)
o zf < m; — Plyi/W! = m; +yi/o (yim;)
This is the kernelized version of the famous iteratively reweighted
least-square (IRLS) method to solve the standard linear logistic
regression.
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Outline
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© Kernel tricks
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o Large-margin classifiers

@ Kernel Methods: Unsupervised Learning
© The Kernel Jungle

@ Characterizing probabilities with kernels
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Loss functions for classifications

We already saw two loss functions for binary classification problems
@ The 0/1 loss £y/1 (f(x),y) = 1(yf(x) <0)
o The logistic l0ss £jogistic (f(x),y) = In (1 + e7VF()
In both cases, the loss is a function of the margin defined as follows
Definition
In binary classification () = {—1,1}), the margin of the function f for a

pair (x,y) is:
yf(x).

In both cases the loss is a decreasing function of the margin, i.e.,
(f(x),y) = (yf(x)), with¢non-increasing

What about other similar loss functions?
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Loss function examples

N

Method o(u)
Kernel logistic regression log (1 +e™")
Support vector machine (1-SVM) | max (1 — u,0)
max (1 — u, 0)?
Boosting e Y
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Large-margin classifiers

Definition
Given a non-increasing function ¢ : R — R, a (kernel) large-margin
classifier is an algorithm that estimates a function f : X — R by solving

z Al F
pﬁeganw yif (xi)) + Al £ 113

Hence, KLR is a large-margin classifier, corresponding to
o(u) =In(1+ e Y). Many more are possible.

Questions:
@ Can we solve the optimization problem for other ’'s?

@ Is it a good idea to optimize this objective function, if at the end of
the day we are interested in the {1 loss, i.e., learning models that
make few errors?



Solving large-margin classifiers

mm*Zqﬂ yif(xi)) + Al £ 1%

o By the representer theorem, the solution of the unconstrained
problem can be expanded as:

n
= Z a;iK (xj,x)
i=1

o Plugging into the original problem we obtain the following
unconstrained and convex optimization problem in R":

1 T
Orlrgﬁn{n;go(y,[Ka],)—i-)\a Ka}.

@ When ¢ is convex, this can be solved using general tools for convex
optimization, or specific algorithms (e.g., for SVM, see later).
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A tiny bit of learning theory

Assumptions and notations

Let P be an (unknown) distribution on X’ x ), and
n(x) = P(Y = 1| X = x) a measurable version of the conditional
distribution of Y given X
Assume the training set S, = (X, Yi)i:l,...,n are i.i.d. random
variables according to P.
The risk of a classifier f : X — R is R(f) =P (sign(f(X)) # Y)
The Bayes risk is

R*= inf  R(f)

f measurable
which is attained for f*(x) = n(x) — 1/2
The empirical risk of a classifier f : X — R is

Zl sign(f(X;)) # Y)
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o-risk

o Let the empirical ¢-risk be the empirical risk optimized by a
large-margin classifier:

n 1 .
RA(F) == e (Yif(X)
i=1
o It is the empirical version of the ¢-risk

Ro(f) = Elp (Yf (X))]

@ Can we hope to have a small risk R(f) if we focus instead on the
p-risk R,(f)?
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A small p-risk ensures a small 0/1 risk

Theorem (Bartlett et al., 2003)

Let ¢ : R — R, be convex, non-increasing, differentiable at 0 with
¢'(0) < 0. Let f : X — R measurable such that

Ry(f)= min R,(g)=R3.
g measurable
Then
R(f)= min R(g)=R"*.
g measurable
Remarks:

@ This tells us that, if we know P, then minimizing the -risk is a
good idea even if our focus is on the classification error.

@ The assumptions on ¢ can be relaxed; it works for the broader class

of classification-calibrated loss functions (Bartlett et al., 2003).
@ More generally, we can show that if R,(f) — R is small, then
R(f) — R* is small too (Bartlett et al., 2003).



A small p-risk ensures a small 0/1 risk

Proof sketch: Show that f(x) is necessarily consistent with
n(x) =P(Y =1|X =x), if f minimizes R,, and thus minimizes R.

Condition on X = x:

Ro(f | X =x) = E[p (YF (X)) [ X = x] = n(x)¢ (f(x)) + (1 = n(x)) ¢ (~F(x))
Ro(=F X =x) =E[p (=YF (X)) | X = x] = n(x)p (—=(x)) + (1 = n(x)) ¢ (f(x))

Therefore:
Ro(f | X =x) = Ro(=f [ X = x) = [2n(x) — 1] x [¢ ((x)) — ¢ (=F(x))]
This must be a.s. <0 because R,(f) < R,(—f), which implies:
o if n(x) > 3, ¢ (f(x)) < (~f(x)) = f(x)>0
o if n(x) < 3, ¢(f(x)) > ¢ (~f(x)) = f(x) <0

These inequalities are in fact strict thanks to the assumptions we made on ¢
(left as exercice). O
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Empirical risk minimization (ERM)
To find a function with a small -risk, the following is a good candidate:

Definition
The ERM estimator on a functional class F is the solution (when it
exists) of:
fn = argmin Rg(f).
feF
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Empirical risk minimization (ERM)
To find a function with a small -risk, the following is a good candidate:
Definition

The ERM estimator on a functional class F is the solution (when it
exists) of:

fp = argmin Ry (f) -
feF

Questions
o Is R7(f) a good estimate of the true risk R,(f)?

A

o Is R,(f,) small?
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Empirical risk minimization (ERM)

To find a function with a small -risk, the following is a good candidate:

Definition
The ERM estimator on a functional class F is the solution (when it
exists) of:
fn = argmin Rg(f).
feF

Questions
o Is R7(f) a good estimate of the true risk R,(f)?

A

o Is R,(f,) small?

~

Ro(fa) — RS = Ry(fa) — inf Ro(F)+ inf Ry(f) — R} .

estimation error approximation error
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Class capacity

Motivations

@ The ERM principle gives a good solution if R, (ﬁ,) is similar to the
minimum achievable risk infrcx R, (f).
@ This can be ensured if F is not “too large”.

@ We need a measure of the “capacity” of F.

Definition: Rademacher complexity
The Rademacher complexity of a class of functions F is:

ZO’:

where the expectation is over (X;),_; , and the independent uniform
{#£1}-valued (Rademacher) random variables (c7);_; .

Rad, (F) =Ex, [sup
feF
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Basic learning bounds
Theorem

Suppose ¢ is Lipschitz with constant L:

Vu,u' €R,  |p(u) — ()| < Ly |u—d|.

Then the ¢-risk of the ERM estimator satisfies (on average over the
sampling of training set)

Es, R, (f) ~ R} < 4LoRad, (F) + inf Ry(f) ~ R;

E isk Estimation error R
XCess p-ris Approximation error

This quantifies a trade-off between:

o F "large" =
large)

o F "small"

error large)

overfitting (approximation error small, estimation error

underfitting (estimation error small, approximation



ERM in RKHS balls

Principle
@ Assume X is endowed with a p.d. kernel.

@ We consider the ball of radius B in the RKHS as function class for
the ERM:
Fe={feH  : |fln<B}.

Theorem (capacity control of RKHS balls)
2B/EK(X, X)

Rad, (.7:3) < ﬁ
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Proof (1/2)

Rad,, (]:B) = ]Exyg

= ]EX,J

sup
feFs

sup
feFs

Ty
Bl — iKx
| H;U x; |17

2 n
;;U,f(x,)

g

(RKHS)

(Cauchy-Schwarz)

n
1Y oiKx, [13,
i=1

Z oioiK (Xi, X;)| (Jensen)

ij=1
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Proof (2/2)

But E, [ojoj] is 1 if i = j, O otherwise. Therefore:

Rad,, (./TB) S —_—

IN
|

2B\/ExK(X, X)

n
Ex | Y Eoloioj] K (X, X;)
ij=1

Exzn: K (X, X;)

i=1

NG .0
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Basic learning bounds in RKHS balls

Corollary

Suppose K(X, X) < k2 a.s. (e.g., Gaussian kernel and x = 1). Then the
ERM estimator in Fpg satisfies

. . _8L,kB ) o
ER, (f) Ry S ==t L.En;B Ro(f) — R,@} .

Remarks
@ B controls the trade-off between approximation and estimation error

@ The bound on expression error is independent of P and decreases
with n

@ The approximation error is harder to analyze in general
@ In practice, B (or A, next slide) is tuned by cross-validation
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ERM as penalized risk minimization

@ ERM over Fpg solves the constrained minimization problem:

{minfey % Z,r',:l 2 (YIf (Xi))

subject to || f ||y < B.

@ To make this practical we assume that ¢ is convex.

@ The problem is then a convex problem in f for which strong duality
holds. In particular f solves the problem if and only if it solves for
some dual parameter X\ the unconstrained problem:

1 n
in{ = Fx))+F A FI3 ¢ -
pg?g{n;_lcp(y (x1)) + Al HH}
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Summary: large margin classifiers

M

i , Al F
;nelyg{ Zsoy )+ Al ”7—[}

@ ¢ calibrated (e.g., decreasing, ©'(0) < 0) = good proxy for
classification error

@ ¢ convex + representer theorem = efficient algorithms
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@ Characterizing probabilities with kernels
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A few slides on convex duality

Strong Duality

\

N

f(x), primal

@ Strong duality means that maxy q(v) = miny (x)

@ Strong duality holds in most “reasonable cases” for convex
optimization (to be detailed soon).
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A few slides on convex duality

Strong Duality

\

f(x), primal

N

q(

14

)

, dual

@ The relation between x* and v* is not always known a priori.
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A few slides on convex duality

Parenthesis on duality gaps

\

N

f(x), primal

q(v), dual

@ The duality gap guarantees us that 0 < f(X) — f(x*) < (k. ©).

@ Dual problems are often obtained by Lagrangian or Fenchel duality.
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A few slides on Lagrangian duality

Setting
@ We consider an equality and inequality constrained optimization
problem over a variable x € X’:

minimize  f(x)
subject to  hi(x) =0,
gi(x) <0,

i oo, My

1
1,....r,

making no assumption of f, g and h.

@ Let us denote by f* the optimal value of the decision function under
the constraints, i.e., f* = f (x*) if the minimum is reached at a
global minimum x*.
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A few slides on Lagrangian duality

Lagrangian
The Lagrangian of this problem is the function L : X x R™ x R" — R
defined by:

L(x, A\, p) = f(x)+ Z)\,-h,- (x) + Z,ujgj(x) .

i=1 j=1

Lagrangian dual function
The Lagrange dual function g : R™ x R" — R is:

g(A, ) = infL(x, A, 1)

xeX

= inf [ FO)+ D Nk () + Y igi(x)
i=1 Jj=1
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A few slides on convex Lagrangian duality

For the (primal) problem:
minimize f(x)
subject to h(x) =0, g(x)<0,
the Lagrange dual problem is:
maximize q(A, @)
subjectto © >0,

Proposition
@ g is concave in (A, ), even if the original problem is not convex.

@ The dual function yields lower bounds on the optimal value f* of
the original problem when g is nonnegative:

g, p) <f*, VAeR"VueR u>0.
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Proofs

@ Remember that
L(x,A ) = f(x +Z)\h +Zujgj(x)

e For each x, the function (X, pt) — L(x, A, pt) is linear, and therefore
both convex and concave in (A, ). The pointwise minimum of
concave functions is concave, therefore g is concave.

o Let X be any feasible point, i.e., h(X) =0 and g(x) < 0. Then we
have, for any A and p > O:

Z Aihi(x) + Zﬂigi(’_() <0,

—  LZ A p) = f( +2Ah )+ > nigi(x) < f(x

= q(A,u)meL(x’A,u)SL(X,A,u)éf(i), vx. O
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Weak duality

o Let g* the optimal value of the Lagrange dual problem. Each
q(X, p) is a lower bound for f* and by definition g* is the best lower
bound that is obtained. The following weak duality inequality
therefore always hold:

g < fr.

@ This inequality holds when g* or f* are infinite. The difference
g* — f* is called the optimal duality gap of the original problem.
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Strong duality

@ We say that strong duality holds if the optimal duality gap is zero,

ie.:
q* — f‘* .

If strong duality holds, then the best lower bound that can be
obtained from the Lagrange dual function is tight

Strong duality does not hold for general nonlinear problems.

It usually holds for convex problems.

Conditions that ensure strong duality for convex problems are called
constraint qualification.

@ in that case, we have for all feasible primal and dual points x, A, p,

q(A, p) < (N7, p") = L(x", A%, p7) = F(x¥) < F(x),
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Slater's constraint qualification

Strong duality holds for a convex problem:

minimize f(x)
subject to gj(x) <0, j=1,...,r,
Ax=b,

if it is strictly feasible, i.e., there exists at least one feasible point that
satisfies:
gi(x)<0, j=1,...,r, Ax=b.
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Remarks

o Slater's conditions also ensure that the maximum g* (if > —o0) is
attained, i.e., there exists a point (A*, p*) with

g\ ") =q" =f"

@ They can be sharpened. For example, strict feasibility is not required
for affine constraints.

@ There exist many other types of constraint qualifications
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Dual optimal pairs

Suppose that strong duality holds, x* is primal optimal, (A*, u*) is dual
optimal. Then we have:

f(x*) = q (X, n*)

x€R"

m r
= inf §F()+ D Xh(x) + Y ilgi(x)
i=1 j=1

<)+ Y Nhi(x) + D rgi(x*)
i=1 j=1
< f(x)

Hence both inequalities are in fact equalities.
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Complimentary slackness
The first equality shows that:
L(x*, A5, pu*) = inf L(x,\*,pn") ,
xeRM

showing that x* minimizes the Lagrangian at (A\*, u*). The second
equality shows the following important property:

Complimentary slackness

Each optimal Lagrange multiplier is zero unless the corresponding
constraint is active at the optimum:

pigi(x*)=0, j=1,...,r.
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Support vector machines (SVM)

@ Historically the first “kernel method” for pattern recognition, still
the most popular.

@ Often state-of-the-art in performance.
@ One particular choice of loss function (hinge loss).

@ Leads to a sparse solution, i.e., not all points are involved in the
decomposition (compression).

e Particular algorithm for fast optimization (decomposition by
chunking methods).
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Support vector machines (SVM)

Definition
@ The hinge loss is the function R — R, :

0 ifu>1,

inge(t) = max (1 — u,0) = :
Phinge (1) ( ) {1_ u  otherwise.

@ SVM is the corresponding large-margin classifier, which solves:

1
min {n ;whinge (vif (xi)) + Al f \3{} ~
1(f(x),y)

yi(x)
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Problem reformulation (1/3)

@ By the representer theorem, the solution satisfies
n
Fx) = aiK (xi,x) ,
i=1
where & solves

1
min {n;SOhinge (y;[Ka];)+>\aTKa}

acRn

o This is a convex optimization problem

@ But the objective function is not smooth (because of the hinge loss)
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Problem reformulation (2/3)

@ Let us introduce additional slack variables &1,...,&, € R. The
problem is equivalent to:

. 1 T
fE ; K )
min {n ,-,15 + A\ a}

QeR",EcRn

subject to:
i > Phinge (vilKal;) .
@ The objective function is now smooth, but not the constraints

@ However it is easy to replace the non-smooth constraint by a
cunjunction of two smooth constraints, because:

u >1—v
u >0

u> @hinge(v) = {
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Problem reformulation (3/3)

In summary, the SVM solution is
F(x) = a&iK (xi,x)
i=1

where & solves:

SVM (primal formulation)

. 1
min  —

n
D &+ M Ka,
aeRr"Eer N “—

subject to:

yil[Ka]i+&—-1>0, fori=1,...,n,
£ >0, fori=1,...,n.
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Solving the SVM problem

@ This is a classical quadratic program (minimization of a convex
quadratic function with linear constraints) for which any
out-of-the-box optimization package can be used.

@ The dimension of the problem and the number of constraints,
however, are 2n where n is the number of points. General-purpose
QP solvers will have difficulties when n exceeds a few thousands.

@ Solving the dual of this problem (also a QP) will be more convenient
and lead to faster algorithms (due to the sparsity of the final
solution).
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Lagrangian

@ Let us introduce the Lagrange multipliers p € R” and v € R".
@ The Lagrangian of the problem is:

1 n
L(avgvu'? V) = EZ{I + )\OlTKOé
i=1

n

= pilyilKali+ & —11 =) vt
i=1

i=1

or, in matrix notations:

1
L(avsau'v V) = g—l—; + )\OlTKOé

— (diag (y)p) 'K — (n+v) "€+ p'1
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Minimizing L (o, &, p, V) w.rt. o

o (o, &, p,v) is a convex quadratic function in e. It is minimized
whenever its gradient is null:

Val =2 \Ka — Kdiag (y)u = K(2Aa — diag (y)u)
@ The following solves VL = 0:

. diag(y)u
T T
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Minimizing L (o, &, p,v) w.rt. €

o (o, &, p,v) is a linear function in &.

@ Its minimum is —oo except when it is constant, i.e., when:

1
VgL:;—u—uzo

or equivalently

1
potv=-
n
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Dual function

@ We therefore obtain the Lagrange dual function:

q(p,v)= inf L(a,& p,v)
aeR",EcR?
_ {uTl — mp " diag (y)K diag (y)p
— 0

@ The dual problem is:

maximize q(p, V)
subjectto pu>0,v>0.

if u+v=
otherwise.

1
n

I
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Dual problem

o If u; > 1/n for some i, then there is no v; > 0 such that
wi +vi =1/n, hence q(p,v) = —cc.
e If 0 < pj <1/nfor all i, then the dual function takes finite values
that depend only on p by taking v; = 1/n — p;.
@ The dual problem is therefore equivalent to:
max p'l— iu diag (y)K diag (y)u
0<pu<1/n 4\ i

or with indices:

maXx x,x
0<p<1/n I,Z“’ 4A,,ley'ym'ﬂj ihXj) -
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Back to the primal

@ Once the dual problem is solved in p we get a solution of the primal
problem by a = diag (y)u/2\.

@ Because the link is so simple, we can therefore directly plug this into
the dual problem to obtain the QP that a must solve:

SVM (dual formulation)

max 2 Qajyi — E ajoiK (X, X;) —2a y — a'Ka,
oEeR"
i=1 i,j=1

subject to:

1 .
Ogy,'a,-gm, fori=1,...,n
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Complimentary slackness conditions

@ The complimentary slackness conditions are, for i = 1,...,n:
pi [yif (xi) +& — 1] =0,
Vfé-l' = 07

@ In terms of o this can be rewritten as:

{a,- if (%) + & —1] =0,
(i = #5) & =0.
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Analysis of KKT conditions

{ai lvif (x;) +& —1] =0,
(a,-—z))/\—"n)&:O.

o If a; =0, then the second constraint is active: & = 0. This implies
y,-f(x;) Z 1.

0 If 0 < yiaj < ﬁ then both constraints are active: & = 0 et
yif (xi) +& — 1 =0. This implies y;f (x;) = 1.

o If o, = 2);”, then the second constraint is not active (§; > 0) while
the first one is active: y;f (x;) + & = 1. This implies y;f (x;) <1
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Another point of view without KKT

The dual can be rewritten as the minimization of a quadratic function
under box constraints

= — — .t. <vya; <
orznelﬁn {q(a) 2a Ka - o y} st. Vi, 0<yja; <C,

The gradient is Vg(a) = Ka —y = [f(x;) — yili=1,...n-
Assume y; = 1 (case with y; = —1 is similar) and consider three cases:

q(a)

o Case 1: 0 < yjaF < C;
o [Vg(a)]i =0;
o = y,'f(X,') =1.
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Another point of view without KKT

The dual can be rewritten as the minimization of a quadratic function
under box constraints

= — — .t. <vya; <
orznelﬁn {q(a) 2a Ka - o y} st. Vi, 0<yja; <C,

The gradient is Vg(a) = Ka —y = [f(x;) — yili=1,...n-
Assume y; = 1 (case with y; = —1 is similar) and consider three cases:

q(a)

o Case 2: yja7 = C;
o [Vg(a)]i <0;
o = y,'f(X,') <1.

ol 2N
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Another point of view without KKT

The dual can be rewritten as the minimization of a quadratic function
under box constraints

= — — .t. <vya; <
orznelﬁn {q(a) 2a Ka - o y} st. Vi, 0<yja; <C,

The gradient is Vg(a) = Ka —y = [f(x;) — yili=1,...n-
Assume y; = 1 (case with y; = —1 is similar) and consider three cases:

q(a)

o Case 3: aF =0;
o [Vg(a)]i = 0;
o = y,'f(X,') > 1.

S0

158 /785



Geometric interpretation
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Geometric interpretation
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Geometric interpretation

o o .
© o 90
ay=21/2nA f=z-coof_T---5 7T B
o) e \
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Support vectors

Consequence of KKT conditions
@ The training points with «; 7% 0 are called support vectors.

@ Only support vectors are important for the classification of new
points:

VXEX, f(x):Z(kiK(X;,X):ZQ;K(X,‘,X),
i=1

ieSv

where SV is the set of support vectors.

Consequences

@ The solution is sparse in «, leading to fast algorithms for training
(use of decomposition methods).

@ The classification of a new point only involves kernel evaluations
with support vectors (fast).

160 /785



Remark: C-SVM

@ Often the SVM optimization problem is written in terms of a
regularization parameter C instead of A as follows:

arg mlan fl3 + CZ Lhinge (f (xi), yi) -
i=1

o This is equivalent to our formulation with C = 51
@ The SVM optimization problem is then:

max 2 a,y, E ajoK (x;,%;) ,
aeRd
ij=1

subject to:
0<yja;<C, fori=1,...,n

@ This formulation is often called C-SVM.
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Remark: 2-SVM

@ A variant of the SVM, sometimes called 2-SVM, is obtained by
replacing the hinge loss by the square hinge loss:

;2'2{ Z‘phmge yif ) + A f”'H} :

o After some computation (left as exercice) we find that the dual
problem of the 2-SVM is:

max 2a'y —a' (K+ n\l)a
QR

subject to:
0<yjaj, fori=1,...,n

@ This is therefore equivalent to the previous SVM with the kernel
K+ nAl and C = +o0
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Part 4

Kernel Methods

Unsupervised Learning
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Principal Component Analysis (PCA)

Classical setting
o Let S = {x1,...,x,} be a set of vectors (x; € RY)

@ PCA is a classical algorithm in multivariate statistics to define a set
of orthogonal directions that capture the maximum variance

@ Applications: low-dimensional representation of high-dimensional
points, visualization
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Principal Component Analysis (PCA)

Formalization
@ Assume that the data are centered (otherwise center them as

preprocessing), i.e.:
1 n
- E X = 0.
n-
i=1

@ The orthogonal projection onto a direction w € R9 is the function
hw : R? — R defined by:

hw (x) = x" ad

[w
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Principal Component Analysis (PCA)
Formalization
@ The empirical variance captured by hy, is:

n

1 P
—;; W(XI) _;g WHQ'

@ The i-th principal direction w; (i =1,...,d) is defined by:

w; = argmax var(hy) st ||w| =1
wl{w,...wj_1}
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Principal Component Analysis (PCA)

Solution

@ Let X be the n x d data matrix whose rows are the vectors
X1,...,Xn. We can then write:

1N (xTw)® 1w XTX
vér(hw):—z(' )2 == = v
n <= | w || n w'w
@ The solutions of:

wi= argmax w' X'Xw st. |w|=1
wl{wiq,...,wj_1}
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Principal Component Analysis (PCA)

Solution

@ Let X be the n x d data matrix whose rows are the vectors
X1,...,Xn. We can then write:

1N (xTw)® 1w XTX
vér(hw):—z(' )2 == = v
n <= | w || n w'w
@ The solutions of:

wi= argmax w' X'Xw st. |w|=1
wl{wiq,...,wj_1}

are the successive eigenvectors of XX, ranked by decreasing
eigenvalues.
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Kernel Principal Component Analysis (PCA)

Let x1,...,X, be a set of data points in X; let K : X x X - R be a
positive definite kernel and H be its RKHS.

Formalization

@ Assume that the data are centered (otherwise center by
manipulating the kernel matrix), i.e.:

1 < 1 —
;Zx; = - Zc,o(x,-) =0.
=il =1

@ The orthogonal projection onto a direction f € H is the function
hr : X — R defined by:

— (0= (o), H,fH>H
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Kernel Principal Component Analysis (PCA)

Let x1,...,X, be a set of data points in X; let K : X x X - R be a
positive definite kernel and H be its RKHS.

Formalization
@ The empirical variance captured by hf is:

n XTW 2 - ”
Vgr(hw)zlz ( I > — Vér(hf) :EZM

2wl n 2 F IR,
@ The j-th principal direction f; (i = 1,...,d) is defined by:

fi = argmax var(hs) st |f|ly =1
fL{fi,...,fi1}
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Kernel Principal Component Analysis (PCA)

Let x1,...,X, be a set of data points in X; let K : X x X - R be a
positive definite kernel and H be its RKHS.

Formalization
@ The empirical variance captured by hf is:

n (XTW> 2

1
var (hw) = — : —  var(hf):
W =2 2 e ZHfHH

@ The j-th principal direction f; (i = 1,...,d) is defined by:

fi = argmax f(x;) |f]l# = 1.
I FL{fiyfie 1}2 I
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Sanity check: kernel PCA with linear kernel = PCA

o Let K (x,y) = x'y be the linear kernel.
@ The associated RKHS H is the set of linear functions:

fw (X) = wa,
endowed with the norm || £y ||z = || W || ga-
@ Therefore we can write:
no( T

A 1 (Xi W)2 _ i & \2
ar (he) =5 2 Tz = AR 2 )"

i=1

o Moreover, w L w' & £, L f.
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Kernel Principal Component Analysis (PCA)

Solution
o Kernel PCA solves, for i =1,...,d:

fi = argmax Zf st. [[fllxg =1
fL{fi,...fie1} 4

@ We can apply the representer theorem (exercise: check that is is also
valid in this case): for i =1,...,d, we have:

Vxe X, fi( Zau (%) %),

with a; = (Oz,"l, c. ,Oz,',n)T € R".
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Kernel Principal Component Analysis (PCA)

@ Therefore we have:

n
1 113, = Z ke K (xk, X)) = o Kaj,
k=1

@ Similarly:
n

Z f, (Xk)2 = a,TK2oz,-.
k=1

@ and
(fi, il = a,-TKaJ-.
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Kernel Principal Component Analysis (PCA)

Solution
Kernel PCA maximizes in o the function:

o = argmax o' K2a,
QcRn

under the constraints:

{aiTKaj = 0 forj=1,...,i—1.

a,-TKa,- =
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Kernel Principal Component Analysis (PCA)

Solution

o Compute the eigenvalue decomposition of the kernel matrix
K =UAUT, with eigenvalues A; > ... > A, > 0.

o After a change of variable 3 = K2 (with K1/2 = UA/?UT),

B; = arg max BTKB,
BER"

under the constraints:

BB = 0 forj=1,....i—1.
BB =1

@ Thus, B, = u; (i-th eigenvector) is a solution!
1

o Finally, a; = A Y-
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Kernel Principal Component Analysis (PCA)

Summary
@ Center the Gram matrix
@ Compute the first eigenvectors (u;, A;)
© Normalize the eigenvectors a;; = u,-/\/K,-

© The projections of the points onto the i-th eigenvector is given by
Ka,-
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Kernel Principal Component Analysis (PCA)

Remarks

@ In this formulation, we must diagonalize the centered kernel Gram
matrix, instead of the covariance matrix in the classical setting

o Exercise: check that X" X and XX have the same spectrum (up to
0 eigenvalues) and that the eigenvectors are related by a simple
relationship.

@ This formulation remains valid for any p.d. kernel: this is kernel PCA

@ Applications: nonlinear PCA with nonlinear kernels for vectors, PCA
of non-vector objects (strings, graphs..) with specific kernels...
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Example

PC2 A set of 74 human tRNA
N sequences is analyzed using a
Ea

ﬁw kernel for sequences (the
o 4 ' . second-order marginalized
° e kernel based on SCFG). This
set of tRNAs contains three
oo classes, called Ala-AGC
© (white circles), Asn-GTT
(black circles) and Cys-GCA
@ (plus symbols) (from Tsuda

et al., 2003).
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The K-means algorithm
K-means is probably the most popular algorithm for clustering.

Optimization point of view
Given data points X3, ..., X, in RP, it consists of performing alternate
minimization steps for optimizing the following cost function

n

i 2

min E xi — . |12,

IJJJ-ERP for j=1,...,k ) — || f I‘,’S,H2

si€{l,...,k}, for i=1,...,

K-means alternates between two steps:

1 cluster assignment:
Given fixed pq, ..., py, assign each x; to its closest centroid

Vi, s € argmin |x; — pl3.
se{l,...,k}
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The K-means algorithm
K-means is probably the most popular algorithm for clustering.

Optimization point of view
Given data points X3, ..., X, in RP, it consists of performing alternate
minimization steps for optimizing the following cost function

n

i 2

min E xi — . |12,

IJJJ-ERP for j=1,...,k — || f I‘,’S,H2

si€{l,...,k}, for i=1l,..n

K-means alternates between two steps:

2 centroids update:
Given the previous assignments sy, ..., s,, update the centroids

Vi: by = argmin > lxi — w3

i:5f=j
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The K-means algorithm
K-means is probably the most popular algorithm for clustering.

Optimization point of view
Given data points X3, ..., X, in RP, it consists of performing alternate
minimization steps for optimizing the following cost function

n

i 2

min E xi — . |12,

IJJJ-ERP for j=1,...,k — || f I‘,’S,H2

si€{l,...,k}, for i=1l,..n

K-means alternates between two steps:

2 centroids update:
Given the previous assignments sy, ..., s,, update the centroids

1
&Vj, p=—> x with G={i:s=j}
\Cj\,ecj
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The kernel K-means algorithm

We may now modify the objective to operate in a RKHS. Given data
points X1,...,X, in X and a p.d. kernel K : X x X — R with H its
RKHS, the new objective becomes
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The kernel K-means algorithm

We may now modify the objective to operate in a RKHS. Given data
points X1,...,X, in X and a p.d. kernel K : X x X — R with H its
RKHS, the new objective becomes

2
e By i ZH@ — K |I5-
sie{l,...,k} for i=1,..,n

To optimize the cost function, we will first use the following Proposition
Proposition

The center of mass ¢, = 1 "7 | (x;) solves the following optimization
problem

n
;Te'%; llo(xi) — pll;-
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The kernel K-means algorithm

Proof

n

1 — 1 — 2
. Z lo(xi) — plF, = - Z llo(xi)l13 — <n Z¢(Xi)7u> + [l pell3,
i=1 i=1 i=1 H

1 n
= D lolxi)lIF — 2 (o, ) + Il
i=1

1\ 2 2 2
= > lexi)ll3 = llpall + lon — pell3ss
i=1

which is minimum for p = .
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The kernel K-means algorithm

Given now the objective,

n
i A 2
pen it ;H@(x,) s |3,

sie{l,...,k} for i=1,..,n

we know that given assignments s;, the optimal p; are the centers of
mass of the respective clusters and we obtain

Greedy approach: kernel K-means

We alternate between two steps:

1 centroids update:
Given the previous assignments sy, ..., s,, update the centroids

Vi, py = argmin > lle(xi) — el

i:S,‘Zj
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The kernel K-means algorithm

Given now the objective,

n
i A 2
pen it ;H@(x,) s |3,

sie{l,...,k} for i=1,..,n

we know that given assignments s;, the optimal p; are the centers of
mass of the respective clusters and we obtain

Greedy approach: kernel K-means

We alternate between two steps:

1 centroids update:
Given the previous assignments sy, ..., s,, update the centroids

. 1
SV, p= Il Z o(xi).
e
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The kernel K-means algorithm

Given now the objective,

n
i A 2
pen it ;H@(x,) s |3,

sie{l,...,k} for i=1,..,n

we know that given assignments s;, the optimal p; are the centers of
mass of the respective clusters and we obtain

Greedy approach: kernel K-means

We alternate between two steps:

2 cluster assignment:

Given fixed pq,..., py, assign each x; to its closest centroid: V i

si € argmin [|p(x;) — g%
se{l,....k}
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The kernel K-means algorithm

Given now the objective,

o B S
J

sie{l,...,k} for i= 1

we know that given assignments s;, the optimal p; are the centers of
mass of the respective clusters and we obtain

Greedy approach: kernel K-means

We alternate between two steps:

2 cluster assignment:

Given fixed pq, ..., py, assign each x; to its closest centroid: V 7,

si € argmin |[p(x;) |C | Z xj) (Cs is from step 1).

se{l,....k} jeCs
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The kernel K-means algorithm

Given now the objective,

o B S
J

sie{l,...,k} for i= 1

we know that given assignments s;, the optimal p; are the centers of
mass of the respective clusters and we obtain

Greedy approach: kernel K-means

We alternate between two steps:

2 cluster assignment:

Given fixed pq, ..., py, assign each x; to its closest centroid: V 7,
s; € argmin | K(x;,Xx;) — C Z K(xi,x;) Z K(xj,x/)
se{l,...k} |Gl ’

j,1eCs
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The kernel K-means algorithm, equivalent objective

Note that all operations are performed by manipulating kernel values
K(xi,x;) only. Implicitly, we are optimizing in fact

2
n
R | FUERES SR
s,e{l7 7k} ‘ 5,‘

for i=1,...,n JeC; H

or, equivalently,

min Z K(xi,x;) — \Cz ’ Z K(xi,x;) +
S,

selloh) | ! s |2
for i=1,...,n =1 JEGs; JleCs;
Then, notice that
k
1
> ap X K =3 g 3 Ko
Gl JECs; =1 e
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The kernel K-means algorithm, equivalent objective

Note that all operations are performed by manipulating kernel values
K(xi,x;) only. Implicitly, we are optimizing in fact

2

1 1
s,e{l,n,k} Z o(xi) — @ Z @(Xj) )

for i=1,...,n JjeGs; H

or, equivalently,

min Z K(xi,x;) — C25 Z K(xi,x;) + Z K(xj,x/)

sie{l,...,k ;
i, JECs ’ l” JECs

and

> K(xiox) Z

' je Cs; 1=1

Zrcs
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The kernel K-means algorithm, equivalent objective
Then, after removing the constant terms K(x;,x;), we obtain:

Proposition
The kernel K-means objective is equivalent to the following one:

k
1
le Z K(xi,x;).

1
5,6{ pocopfX ieC

for i=1

This is a hard combinatorial optimization problem.

There are two types of algorithms to address it:
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The kernel K-means algorithm, equivalent objective
Then, after removing the constant terms K(x;, x;), we obtain:

Proposition

The kernel K-means objective is equivalent to the following one:

k
1
le Z K(xi,x;).

1
s,E{ pocopfX iieq,

for i=1

This is a hard combinatorial optimization problem.

There are two types of algorithms to address it:
Q@ greedy algorithm: kernel K-means

Q spectral relaxation: spectral clustering
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Spectral clustering algorithms

Instead of a greedy approach, we can relax the problem into a feasible
one, which yields a class of algorithms called spectral clustering

First, consider the objective

5,6{1, ,k} Z Z K(XHXJ)

for i=1,...,n ”JGC

and we introduce

(%) the binary assignment matrix A in {0, 1}"*% whose rows sum to one

(%) the diagonal rescaling matrix D in R¥*k with diagonal entries [D];;
equal to (3-7_;[A];)~!: the inverse of the cardinality of cluster ;.

and the objective can be rewritten (proof is easy and left as an exercise)

max trace(D1/2ATKAD1/2)] s.t. (%) and (x).
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Spectral clustering algorithms

rR%xtrace(Dl/zATKADl/z) s.t. (%) and (%*).

The constraints on A, D are such that DY/2ATAD/2 = | (exercise). A
natural relaxation consists of dropping the constraints (x,*x) on A
and D and instead optimize over Z = ADY/2:

max trace (Z'KZ) st. Z'Z=1.
ZeRnxk
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Spectral clustering algorithms

rR%xtrace(Dl/zATKADl/z) s.t. (%) and (%*).

The constraints on A, D are such that DY/2ATAD/2 = | (exercise). A
natural relaxation consists of dropping the constraints (x,*x) on A
and D and instead optimize over Z = ADY/2:

max trace (Z'KZ) st. Z'Z=1.
ZeRnxk

A solution Z* to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. This procedure
is related to the kernel PCA algorithm!

Question

How do we obtain an approximate solution (A, D) of the original problem
from the exact solution of the relaxed one Z*7
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Spectral clustering algorithms

n/;l%xtrace(Dl/zATKADl/z) s.t. (%) and (%*).

The constraints on A, D are such that DY/2ATAD/2 = | (exercise). A
natural relaxation consists of dropping the constraints (x,*x) on A
and D and instead optimize over Z = ADY/2:

max trace (Z'KZ) st. Z'Z=1.
ZeRnxk

A solution Z* to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. This procedure
is related to the kernel PCA algorithm!

Answer 1

With the original constraints on A, every row of A has a single non-zero
entry = compute the maximum entry of every row of Z*.
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Spectral clustering algorithms

n/;l%xtrace(Dl/zATKADl/z) s.t. (%) and (%*).

The constraints on A, D are such that DY/2ATAD/2 = | (exercise). A
natural relaxation consists of dropping the constraints (x,*x) on A
and D and instead optimize over Z = ADY/2:

max trace (Z'KZ) st. Z'Z=1.
ZeRnxk

A solution Z* to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. This procedure
is related to the kernel PCA algorithm!

Answer 2

Normalize the rows of Z* to have unit ¢>-norm, and apply the traditional
K-means algorithm on the rows. This is called spectral clustering.
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Spectral clustering algorithms

n/;l%xtrace(Dl/zATKADl/z) s.t. (%) and (%*).

The constraints on A, D are such that DY/2ATAD/2 = | (exercise). A
natural relaxation consists of dropping the constraints (x,*x) on A
and D and instead optimize over Z = ADY/2:

max trace (Z'KZ) st. Z'Z=1.
ZeRnxk

A solution Z* to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. This procedure
is related to the kernel PCA algorithm!

Answer 3
Choose another variant of the previous procedures.
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Canonical Correlation Analysis (CCA)

Given two views X = [x1,...,X,] in RP*" and Y = [yy,...,y,] in RI*"
of the same dataset, the goal of canonical correlation analysis (CCA) is
to find pairs of directions in the two views that are maximally correlated.

Formulation
Assuming that the datasets are centered, we want to maximize
1N oy Ty T
7 2im1 Wa Xi¥; Wb
max

1/2 12
w,ERP,wj,ER? (% o W]l xx. wa) / (,, o wa)’iyiTWb) /

Assuming that the pairs (x;,y;) are i.i.d. samples from an unknown
distribution, CCA seeks to maximize

T T
i cov(w, X,w, Y)

w,ERP,w,ERY var(w] X)/var(w, Y)
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Canonical Correlation Analysis (CCA)

Given two views X = [x1,...,X,] in RP*" and Y = [yy,...,y,] in RI*"
of the same dataset, the goal of canonical correlation analysis (CCA) is
to find pairs of directions in the two views that are maximally correlated.

Formulation
Assuming that the datasets are centered, we want to maximize
150 Ty
7 2im1 Wa Xi¥; Wb
max

1/2 12
w,ERP,wj,ER? (% o W]l xx. wa) / (,, o wa)’iyiTWb) /

It is possible to show that this is an generalized eigenvalue problem (see
next slide or see Section 6.5 of Shawe-Taylor and Cristianini 2004b).

The above problem provides the first pair of canonical directions. Next
directions can be obtained by solving the same problem under the
constraint that they are orthogonal to the previous canonical directions.
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Canonical Correlation Analysis (CCA)

Formulation
Assuming that the datasets are centered,
TXTYWb

max :
wo€RPwoeRY (W T XT Xw,)Y/? (WY TYw, )1/2

can be formulated, after removing the scaling ambiguity, as

max  w.X'Yw, st. w)X ' Xw,=1 and w]Y Yw, =1.
WaEprwbeRd

Then, there exists A\; and Ap such that the problem is equivalent to

As A
: Ty T TyT b, TyT

min —w, X Yw, + X' Xw, —1 Y Yw, —1).
L 2( a— 1)+ (w, b—1)
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Canonical Correlation Analysis (CCA)

Taking the derivatives and setting the gradient to zero, we obtain

~X"Yw, + XA, X" Xw, =0
—Y "Xw, + Y ' Yw, =0

Multiply first equality by w. and second equality by wa; subtract the
two resulting equalities and we get

AWl XTXw, = Apw] Y TYw, = A, = )y = ),

and then, we obtain the generalized eigenvalue problem:

0 XY w, XX 0 w,
T =A T
Y'X 0 Wp 0 Y'Y Wp
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Canonical Correlation Analysis (CCA)

Let us define

0 XY X'™ 0 w,
ZA_[YTX 0 ] ZB_[ 0 YTY} and ""_[ }

Assuming the covariances are invertible, the generalized eigenvalue
problem is equivalent to

TP aw = AT %W
which is also equivalent to the eigenvalue problem

3P ar (2 P w) = A w).
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Kernel Canonical Correlation Analysis

Similar to kernel PCA, it is possible to operate in a RKHS. Given two

p.d. kernels K, Kp : X x X — R, we can obtain two “views” of a
dataset x1,...,%x, in X"

(pa(x1),-- -, palxn)) and  (pu(x1), ..., @b(xn)),

where o, : X — H, and ¢p : X — Hp, are the embeddings in the
RKHSs H, of K; and H}, of K, respectively.

Formulation
Then, we may formulate kernel CCA as

1
max n > (o ‘Pa(xi»ya (pb(xi), fb>7—[b
fa€Ha,fEH (l

LS (ab),) (AT (o onl)B,)
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Kernel Canonical Correlation Analysis

Similar to kernel PCA, it is possible to operate in a RKHS. Given two

p.d. kernels K, Kp : X x X — R, we can obtain two “views” of a
dataset x1,...,%x, in X"

(pa(x1),-- -, palxn)) and  (pu(x1), ..., @b(xn)),

where o, : X — H, and ¢p : X — Hp, are the embeddings in the
RKHSs H, of K; and H}, of K, respectively.

Formulation

Then, we may formulate kernel CCA as

EDERACHIACH
feHadacty (13 20\1/2 (1 5= n1/2°
TR (E Zi:l fa(x;) ) (*Z fo(xi) )

n i=1 !
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Kernel Canonical Correlation Analysis

Up to a few technical details (exercise), we can apply the representer
theorem and look for solutions f,(.) = >_7_; a;jK,(x;,.) and
fo(.) = > i1 BiKb(xi,.). We finally obtain the formulation

130 [Kao]i[KbBli
aGIg’]’aBXER" 15\ 2\1/2 (15 2\1/2’
’ (* Zi:l[Kaa]i) (E Zi:l[KbB]i)

n

which is equivalent to

a ' K,Ky3
aeRm"aBXeR" Tw2.\1/2 (AT 2 a\1/2’
’ (a'K3a) (ﬁ Kbﬂ)

or, after removing the scaling ambiguity for o and 3,
Equivalent formulation

T T2, Tw2g
aeﬂrgpn%ewa K:KpB st. a Kia=1 and 8 K8 =1.
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Kernel Canonical Correlation Analysis

T T2 T3 _
aggg}aﬁxeRna K:KpB st. oo K;ia=1 and 8 K;j8=1.

@ This also leads to a generalized eigenvalue problem.

@ The subsequent canonical directions are obtained by solving the
same problem with additional orthogonality constraints.
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Kernel Canonical Correlation Analysis

T T2 T3 _
aelgg,anﬁ)(eRna K:KpB st. oo K;ia=1 and 8 K;j8=1.

@ This also leads to a generalized eigenvalue problem.

@ The subsequent canonical directions are obtained by solving the
same problem with additional orthogonality constraints.

What is wrong here?
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Kernel Canonical Correlation Analysis

T T2 T3 _
ae&?ﬁéwa K:KpB st. oo K;ia=1 and 8 K;j8=1.

@ This also leads to a generalized eigenvalue problem.

@ The subsequent canonical directions are obtained by solving the
same problem with additional orthogonality constraints.

What is wrong here?

If K; and K}, are invertible, make the change of variable o’ = K, and
B’ = Kp3, and we obtain the equivalent formulation

max o3 st. &'a/=1and 878 =1.
a’cR", B'cRn

The function is maximized for any o’ = 3’ in R".
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Kernel Canonical Correlation Analysis

T T2 T2
max o K ;K st. a Kia=1 and Ki3 = 1.
acR” BeRN Ko/ a P KB
@ This also leads to a generalized eigenvalue problem.

@ The subsequent canonical directions are obtained by solving the
same problem with additional orthogonality constraints.

What is wrong here?

If K; and K}, are invertible, make the change of variable o’ = K, and
B’ = Kp3, and we obtain the equivalent formulation

max o3 st. &'a/=1and 878 =1.
a’cR", B'cRn

The function is maximized for any @’ = B’ in R". In high (or infinite)
dimension, it is easy to find spurious correlations.
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Spurious correlations

Spurious correlations are bad:

Age of Miss America

25yrs

23.75yrs

225yrs

21.25yrs

20yrs

18.75 yrs

Age of Miss America
correlates with
Murders by steam, hot vapours and hot objects

Correlation: 87.01% (r=0.870127)

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-®- Murders by steam  -#- Age of Miss America

Figure: http://www.tylervigen.com/.

8 murders

6 murders

4 murders

weals Aq ssapIniy

2 murders
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Spurious correlations

Spurious correlations are bad:

Worldwide non-commercial space launches
correlates with
Sociology doctorates awarded (US)

Correlation: 78.92% (r=0.78915)

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
60 Launches 700 Degrees awarded

650 Degrees awarded
50 Launches
600 Degrees awarded

40 Launches
550 Degrees awarded

(5N) pap.eme sa1e1010p A30j01205

30 Launches 500 Degrees awarded
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Worldwide non-commercial space launches

-®- Sociology doctorates awarded (US)  -¢- Worldwide non-commercial space launches

Figure: http://www.tylervigen.com/.
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Kernel Canonical Correlation Analysis

T T2 T3 _
ag]}@r,ag(eR"a K:KpB st. oo K;ia=1 and 8 K;j8=1.

@ spurious correlation is a problem of overfitting;

@ it also a problem of numerical instability, due to the need to invert
the kernel matrices;
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Kernel Canonical Correlation Analysis

T T2 T3 _
ae&?ﬁéwa K:KpB st. oo K;ia=1 and 8 K;j8=1.

@ spurious correlation is a problem of overfitting;

@ it also a problem of numerical instability, due to the need to invert
the kernel matrices;

A solution to both problems: Regularize!
e Find smooth directions (f, fp) by penalizing ||f;||2, and ||fp|%,.

@ it consists of replacing the constraints o' K2ax = 1 by

(1-na'Kla+7a'Ka=1,

2
16112,

and do the same for ,BTK%,@ =1
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Application of kernel CCA

Finding a joint latent representation of text (tags) and images.

boat, ship,

. iy ﬁ‘h T .

deer, park, leaves,
denmark, forest

* deer S A R
: tShka e fxm\ i = !
ruc N :
e ou
e R eI e . [P

~ :truck, engine, rescure,
fire, department

(b) Visualization of CCA (V+T+C)

Figure: Figure from Gong and Lazebnik, 2014.
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The Kernel Jungle
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Introduction

@ The kernel function plays a critical role in the performance of kernel
methods.

@ It is the place where prior knowledge about the problem can be

inserted, in particular by controlling the norm of functions in the
RKHS.

@ In this part we provide some intuition about the link between kernels
and smoothness functional through several examples.

@ Subsequent parts will focus on the design of kernels for particular
types of data.
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Motivations

@ The RKHS norm is related to the smoothness of functions.

@ Smoothness of a function is naturally quantified by Sobolev norms
(in particular Ly norms of derivatives).

@ Example: spline regression

@ In this section we make a general link between RKHS and Green
functions defined by differential operators.
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A simple example

Definition: Absolute Continuity (AC)

A function f is absolutely continuous on [a, b] iff there exists a Lebesgue
integrable function g on [a, b] such that for all x € [a, b],

f(x) = f(a) +/ g(t)dt
a
in which case g = f’ almost everywhere.

Let H = {f:[0,1] — R,AC, " € L?([0,1]),f (0) =0} , endowed with
the bilinear form:

1
Vf,g €H, <f,g>H:/O f'(u) g’ (u)du.

The norm (f, f), measures the smoothness of f in terms of its first

variation.
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The RKHs point of view

Theorem
H is an RKHS with r.k. given by:

V(x,y) €[0,1]?, K(x,y)=min(x,y).

Therefore, the RKHS norm is precisely the smoothness functional defined
in the simple example:

I 1l = 1 F'  i2o.a)

In particular, the following problem

n 1
. L X;: 2 / 2
min (vi — f(xi)) —i—)\/o (f'(t))" dt

feH 4

can be reformulated as a simple kernel ridge regression problem with
kernel K (x,y) = min(x,y):

min > (vi — F(xi))? + M| £ |I3,

206 / 785



Proof (1/5)
We need to show that
@ H is a Hilbert space of functions

@ Vx € [0,1], K« € H,
Q V(x,f) € [0, 1] x H, (f, Kx)y, =  (x).
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Proof (2/5)
‘H is a pre-Hilbert space of functions

e H is a vector space of functions, and (f, g),, a bilinear form that
satisfies (f,f),, > 0.

o f absolutely continuous implies differentiable almost everywhere, and
Vx €[0,1], f(x)=f(0) +/ f'(u)du.
0

e For any f € H, f(0) = 0 implies by Cauchy-Schwarz:

7091 = | [ | < ve (/O f'(u)zdu)é _ R R

Therefore, (f,f),, =0 = f =0, showing that (., .),, is an inner
product. H is thus a pre-Hilbert space.
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Proof (3/5)

‘H is a Hilbert space
@ To show that # is complete, let (f,)nen a Cauchy sequence in H
o (f)nen is a Cauchy sequence in L2[0, 1], thus converges to
g € L2[0,1]
@ By the previous inequality, (f,(x))nen is @ Cauchy sequence and
thus converges to a real number f(x), for any x € [0, 1]. Moreover:

f(x) = Ii’r7n fa(x) = lim /OX fo(u)du = /OX g(u)du,

n

showing that f is absolutely continuous and ' = g almost
everywhere; in particular, f’ € L2[0, 1].

e Finally, f(0) = lim,, f,(0) = 0, therefore f € H and

lim | £ = £ ll3 = | ' = gn ll 120,27 = O-
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Proof (4/5)

Vx €[0,1], Ky € H
o Let Ki(y) = K(x,y) = min(x, y) sur [0, 1]%:

% K(S/t)

t

s 1
@ K, is differentiable except at s, has a square integrable derivative,
and K (0) = 0, therefore K € H for all x € [0,1].
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Proof (5/5)

For all x, f, (f, Kx)y, = f (x)
e For any x € [0,1] and f € H we have:

(F, Ky = /0 F(u)K. (u)du = /OX F(u)du = F(x),

@ This shows that H is a RKHS with K asr.k. O

211

785



Generalization

Theorem

Let X = R? and D a differential operator on a class of functions H such
that, endowed with the inner product:

v(fag)€H27 <f7g>’H:<Df7Dg>L2(X)’

it is a Hilbert space.

Consider the operator R = D*D where D* denotes the adjoint operator
of D. Assume that R admits a Green function (x,y) — K(x,y), so that
K(x,.) € H for all x € X. Then, the space H is a RKHS with r.k. given
by K.
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Green function?

Definition
Let the differential equation on H:

f =Rg,

where g is unknown. In order to solve it we can look for g of the form:
g0 = [ k(xNf()d
for some function k : X2 — R. k must then satisfy, for all x € X,

f (x) = Rg (x) = (Rkx, ) 2y -

If such a k exists, it is called the Green function of the operator R.
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Proof

o Let H be a Hilbert space endowed with the inner product:

<f7g>;\a = (Df, Dg>L2(X) )

and K be the Green function of the operator R = D*D.
o Forall x e X, K, € H because:

<DKX, DKX>L2(X) — <D*DKX7 KX>L2(X) — KX (X) < 0.

(caveat: sometimes other conditions must be fulfilled to be in , to
be checked on a case by case basis).

@ Moreover, for all f € H and x € X, we have:

@ This shows that H is a RKHS with K asr.k. O
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Example

@ Back to our example, take X = [0, 1] and Df (u) = f'(u)

@ To find the r.k. of H we need to solve in k:
f(X) = <D*Dkx, f>L2([O,1])
1
= / k.(u)f'(u)du
0

@ The solution is
ks (u) = 1 (v)

o) = {u if u<x,

x  otherwise.

which gives

and therefore
k(x,x") = min(x, x)
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Mercer kernels

Definition

A kernel K on a set X is called a Mercer kernel if:
@ X is a compact metric space (e.g.: closed bounded subset of RY).
Q@ K: X x X — Ris a continuous p.d. kernel.

Motivations

@ We can exhibit an explicit and intuitive feature space for a large
class of p.d. kernels

@ Historically, provided the first proof that a p.d. kernel is an inner
product for non-finite sets X' (Mercer, 1905).

@ Can be thought of as the natural generalization of the factorization
of positive semidefinite matrices over infinite spaces.
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Sketch of proof that a Mercer kernel is an inner product

o

2]

The kernel matrix when X is finite becomes a linear operator when
X is a metric space.

The matrix was positive semidefinite in the finite case, the linear
operator is self-adjoint and positive in the metric case.

The spectral theorem states that any compact linear operator
admits a complete orthonormal basis of eigenfunctions, with
non-negative eigenvalues (just like positive semidefinite matrices can
be diagonalized with nonnegative eigenvalues).

The kernel function can then be expanded over basis of
eigenfunctions as:

K (1) = At (x) e (1)
k=1

where A\; > 0 are the non-negative eigenvalues.
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In case of...

Definition
Let H be a Hilbert space
@ A linear operator is a continuous linear mapping from H to itself.

@ A linear operator L is called compact if, for any bounded sequence
{fa}>21, the sequence {Lf,}>7; has a subsequence that converges.

o L is called self-adjoint if, for any f, g € H:

(f,Lg) =(Lf,g).
o L is called positive if it is self-adjoint and, for any f € H:

(F,Lf) > 0.
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An important lemma

The linear operator

o Let v be any Borel measure on X, and L2 (X) the Hilbert space of
(equivalence classes of) square integrable functions on X.

o For any function K : X2 — R, let the transform:

VF e L2(X), (Lkf)(x) :/K(x,t)f(t) dv(t).

Lemma

If K is a Mercer kernel, then Lk is a compact and bounded linear
operator over L2 (X), self-adjoint and positive.
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Diagonalization of the operator

We need the following general result (e.g., Debnath and Mikusinski,
2005, Section 4.10)

Spectral theorem

Let L be a compact self-adjoint linear operator on a Hilbert space H.
Then there exists in 7 a complete orthonormal system (1,5, ...) of
eigenvectors of L, with real eigenvalues (A1, A2, ...) which are
non-negative if L is positive.

Remark

This theorem can be applied to Lk. In that case the eigenfunctions
associated to the eigenfunctions A, % 0 can be considered as continuous
functions, because: )

¢k=)\k

Lty .
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Main result

Mercer’'s Theorem

Let X be a compact metric space, v a nondegenerate? Borel measure on
X, and K a continuous p.d. kernel. Let A\; > Ay > ... > 0 denote the
nonnegative eigenvalues of Lk and (1,2, ...) the corresponding
eigenfunctions. Then all functions 1, are continuous, and for any
x,teX:

K (x,t) = 3 Mo (x) 0 1)
k=1

where the convergence is absolute for each x,t € X', and uniform on
X x X.

“i.e., v(U) > 0 for any nonempty open set U C X
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Mercer kernels as inner products

Let 2 denote the Hilbert space of real-valued sequences u = (uk)ken
such that Y, . U < 400, endowed with the inner product

(U, v) = ken Uk k-

Corollary
The mapping

b X 02

X <\/)‘>k1/)k (X)) ren

is well defined, continuous, and satisfies

K (x,t) = (®(x), P (t)p .

223 /785



Proof of the corollary

o By Mercer theorem we see that for all x € X', > A\k1? (x) converges
to K (x,x) < oo, therefore ® (x) € (2.

@ The continuity of ® results from:

[ (x) = D (t) [ =Y e (¥r (%) — v (1))
k=1

= K (x,x) + K (t,t) — 2K (x,t)
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Summary

@ This proof extends the proof valid when X is finite.
@ This is a constructive proof, developed by Mercer (1905).

@ The eigensystem (A and k) depend on the choice of the measure
dv(x): different v's lead to different feature spaces for a given
kernel and a given space X

o Compactness and continuity are required. For instance, for X = RY,
the eigenvalues of:

[ K@ =0

are not necessarily countable, Mercer theorem does not hold. Other
tools are thus required such as the Fourier transform for
shift-invariant kernels.
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Example 1: [0,1] (1/6)

o Consider the unit interval X = [0, 1] endowed with the Lebesgue
measure dv(x) = dx

@ Let a p.d. kernel on X of the form
K(x,t)=r(x—t),

where k£ : R — R is continuous and 1-periodic.
o To write Mercer’s expansion we need to find the eigenfunctions of
Lk by solving

(Lkth)(x) = /0 b (x — €)1 (1) dit = M) (x)
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Example 1: [0,1] (2/6)

Lemma
Let (1n)nen be the Fourier ONB of L?([0,1]) given by o(x) = 1 and

Vn>1, {”‘p?n—l(x) = v/2sin(2mnx),
Y2n(x) = /2 cos(2mnx) .

Let the Fourier expansion of k be?
(0.0
vx €[0,1], k(x)= Z Ranth2n(x) .
n=0

Then for any n € N, 1, is an eigenfunction of Lk with eigenvalues &g for
Yo and Ron/V/2 for ion_1 and a,.

?K symmetric — k even —> Ropt1 = 0 for n € N.
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Example 1: [0,1] (3/6)

Proof sketch:
o (¥n)nen is an ONB of L2([0,1]) by direct computation of

Jo i(x)ij(x)dx = 3.

e By trigonometric expansion of sin(a + b) and cos(a + b), show that

{"pZn(x —t) = % [¥2n(X)2n(t) + P2n-1(X)t2n-1(t)] ,
Yon—1(x—t) = % [Y2n-1(X)¥2n(t) — 2n(x)tP2n-1(t)] .

@ Then direct computation of Lxv);, e.g.,

Lkpan(x Zﬁzz/ Poe(x — t)ihan(t)dt

= :}/ [120(X)120(t) + V20— 1(X) 20— 1(t)] Y2n(t)dt
:Z/j/zé%e(x) = /j/zfq/@"( x). O

T
o
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Example 1: [0,1] (4/6)

Remark: Mercer's theorem is obviously correct. All v ’'s are continuous,
and for any x, t € [0, 1] the Mercer expansion of the kernel is:

K(x,t) = ko + Z ’? [2n—1(X)V2n—1(t) + Y2n(X)12n(t)]

= Z /%2nw2n(x - t) (3)
n=0
=kr(x—1t),

with absolute and uniform convergence (because k is continuous).

229 /785



Example 1: [0,1] (5/6)

Example: polynomial decay of eigenvalues
For any 8 € N*, let

ko =0
Ron =V2n 2 forn>1.

Then the corresponding kernel is

vx,t € [0,1], K(x,t)= (x—t—[x—t]),

B,
@0)! /a’) o
where Byg is the (23)-th Bernoulli polynomial?, e

By(x) = x> —x+4+1/6, Ba(x)=x*—2x>+x>-1/30, ...

“https://en.wikipedia.org/wiki/Bernoulli_polynomials

Proof left as exercice (check Fourier expansion of Bernoulli polynomials).
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Example 1: [0,1] (6/6)

Example: exponential decay of eigenvalues
For any p € Ry, let

ko =0,
Rop =e Pforn>1.

Then the corresponding kernel is

vote0,1], Kxt) = L2erws@rlx—t) -1

Proof left as exercice (or check Bach, 2013, p.21).

e2r —2ePcos (2m(x —t)) +1°
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Example 2: S9°1 (1/6)

o Consider the unit sphere in RY:

X:Sd_lz{xeRd : ||xH:1}

o Let v be the Lebesgue measure on S9~1. Note that:

Nl

2w

v(§971) =
MRE)
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Example 2: 971 (2/6)

o Let a p.d. kernel on S9! of the form:
K (x,t) =¢ (th> ,

where ¢ : [-1,1] — R is continuous.

@ To write Mercer's expansion we need to find the eigenfunctions by
solving

Lo (<t v@dnty =0
@ For that purpose study polynomials that solve the Laplace equation:

B

Af = — +... =0
0x12 8x§

where A is the Laplacian operator on R,
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Example 2: S9°1 (3/6)

Definition (Spherical harmonics)

@ A homogeneous polynomial of degree k > 0 in RY whose Laplacian
vanishes is called a homogeneous harmonic of order k.

@ A spherical harmonic of order k is a homogeneous harmonic of order
k on the unit sphere §9-1

The set Vi (d) of spherical harmonics is a vector space of dimension
(2k +d —2)(k+d —3)!
kl(d —2)!

‘:‘
HNESTH
PHESEH W

N(n, k) = dim (Vi(d)) =
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Example 2: S9! (4/6)
Spherical harmonics form the Mercer's eigenfunctions, because:

Theorem (Funk-Hecke) (e.g., Miiller, 1998, p.30)
For any x € S971, Y, € Vi(d) and p € C([-1,1]),

/5 o (xTE) Vi) du(t) = MY )
where )
M= v (sd—2> /1 o(t)Pe(d; t)(1 — t?) T dt
and Py(d; t) is the Legendre polynomial of degree k in dimension d.
When ¢ € CK([~1,1]) we have Rodrigues rule (Miiller, 1998, p.23):

F(@) 1 k+9=3
— d—2 2 (k) —#
Ne=v (S )2kr(k+dgl)/_1@ () (1- )7 ar
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Example 2: S91 (5/6)
o Forany k >0, let {Y;(d;x)},2 (dk an orthonormal basis of Vi (d)

@ Spherical harmonics {{ka( x)}N(dk } __form an orthonormal

basis for L2 (S7971)

o Therefore, for any kernel K (x,t) = ¢ (x't) on S9! the Mercer
eigenvalues are exactly the Ay's, with corresponding orthonormal
eigenfunctions { Y} ;(d; x)}JI.V:(f;k).

@ Note that eigenfunctions are the same for different ¢'s, only the

eigenvalues change

®
We
wHS

5
$O
sTH
*EK®
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Example 2: S91 (6/6)

Take d = 2 and K(x,t) = (1 +th)2 for x,t € St
Using Rodrigeus rule we get 3 nonzero eigenvalues:

Xo =31, M\ =27, &:%

with multiplicities 1,2 and 2

Corresponding eigenfunctions:

( 1 X1 x xix x12—x22>
V2 TN T T

@ The resulting Mercer feature map is

d(x) = (\/g, V2x1, V250, V2x1%0, Xlz\éxg)

Obviously, ®(x)"®(t) = K(x,t) for x,t € S* (exercice)
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RKHS of Mercer kernels

@ Let X be a compact metric space, and K a Mercer kernel on X
(symmetric, continuous and positive definite).

@ We have expressed a decomposition of the kernel in terms of the
eigenfunctions of the linear convolution operator.

@ In some cases this provides an intuitive feature space.
@ The kernel also has a RKHS, like any p.d. kernel.

@ Can we get an intuition of the RKHS norm in terms of the
eigenfunctions and eigenvalues of the convolution operator?
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Reminder: expansion of Mercer kernel

Theorem

Denote by Lx the linear operator of L2 (X') defined by:
W € 12(X), (Lxf) (x) = /K(x,t)f(t) dv(t).

Let (A1, A2, ...) denote the eigenvalues of Lk in decreasing order, and
(11,2, ...) the corresponding eigenfunctions. Then it holds that for any
X,y € X:

K (xy) =D Mtb (%) i (y) = (@ (%), @ (¥)) e
k=1

with ® : X' = (2 defined par ® (x) = (v Atk (X)), oy
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RKHS construction

Theorem
Assuming that all eigenvalues are positive, the RKHS is the Hilbert

space:
o0 © 2
= {f:Za,w,-, with ka }
i=1 k=1

endowed with the inner product:

> ab
(f, &)y = l;\ikk, for f = aur,8 =Y btk
P k

k=1
Remark

If some eigenvalues are equal to zero, then the result and the proof remain valid
on the subspace spanned by the eigenfunctions with positive eigenvalues.
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Proof (1/6)

Sketch

In order to show that H is the RKHS of the kernel K we need to show
that:

@ it is a Hilbert space of functions from X to R,
Q foranyx e X, K, € H,
@ foranyxe X and f € H, f(x) = (f,Kx)y -
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Proof (2/6)

H is a Hilbert space
Indeed the function:

1
L2 :L2(X) —H

D ai— Y ai/ A
i=1 i=1

is an isometric isomorphism, therefore # is a Hilbert space, like L2 (X).
O
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Proof (3/6)

‘H is a space of continuous functions

Let 1, = 27:1 ajy; € H. These functions converge to f in H. Hence,
they also converge uniformly to f on X’ (see below).

Moreover, the functions v); are continuous (eigenvectors of a 'smoothing’
operator), therefore f, is also continuous, for all n. Hence, since uniform
convergence preserves continuity, it must be that f is continuous.

Convergence in || . || implies uniform convergence on X

For any f = 22, ajthj € H, and x € X, we have (if f(x) makes sense):

1
= || f [[nK (x,x)2

H fHH V Ck. 243 /785



Proof (5/6)

K, eH

For any x € X let, for all i, a; = \j9); (x) and define ¢y := > "2 ajth;.
We have:

Mercer's thm

0o 9 oo
a;

> PVl > At (x)* = K (x,x) < oo,

i=1 i=1

therefore p, € H. As seen earlier the convergence in H implies (uniform)
pointwise convergence, therefore for any t € X:

Mercer’s thm

o)

Px (t) Z aﬂl): Z A:%Z): I - (X, t)’

i=1

therefore py = Ky e H. O
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Proof (6/6)

f(x)=(f,Ka)y
Let f =) 72, aihi € H, et x € X. We have seen that:

= Z Aii (x) i
il

therefore:
it e
(7Kg = D0 20T S g () = £x)
i=1 ! i=1

which concludes the proof. [
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Remarks

@ Although H was built from the eigenfunctions of L, which depend
on the choice of the measure dv (x), we know by uniqueness of the
RKHS that # is independant of v and L.

@ Mercer theorem provides a concrete way to build the RKHS, by
taking linear combinations of the eigenfunctions of Lk (with
adequately chosen weights).

@ The eigenfunctions (1;);cy form an orthogonal basis of the RKHS:

1
(Vishj)yy =0 sii#], HwiHH:@'

The RKHS is a well-defined ellipsoid with axes given by the
eigenfunctions.
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Example: Sobolev space of periodic functions on [0, 1]

Corollary
For B € Ny, let the Mercer kernel with polynomially decaying eigenvalues:

Vx,t € [0,1], K(x,t)= 825( —|x—t]),

(23)

where Byg is the (2/3)-th Bernoulli polynomial. Then the RKHS is the
set of functions f : [0,1] — R whose Fourier coefficients satisfy:

o0
113 =3 (Boa + ) 27 < o0
n=1

This is the Sobolev space of functions f such that f(1) is absolutely
continuous and f()(0) = f()(1), for i =0,...,5 —1, and

1 2
1718 =72 [ (7)) dx
0
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Proof sketch

@ The characterization of the RKHS in terms of Fourier coefficients is
a direct application of the previous result, noting that the Fourier
basis is an ONB of eigenfunctions of Ly, and that the corresponding
eigenvalues are n—28.

@ For the characterization as a Sobolev space, we use Parceval
equality to rewrite the Sobolev norm as the ¢2 norm of the Fourier
coefficients of £(%), which are (roughly) the Fourier coefficients of f
multiplied by n®. For details, see Tsybakov (2004, Proposition 1.14).
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Outline

© The Kernel Jungle
@ Green, Mercer, Herglotz, Bochner and friends

@ Shift-invariant kernels
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Motivation

o Let us suppose that X is not compact, for example X = R¢.
@ In that case, the eigenvalues of:

/X K (x,8) & (£) di(t) = \ob ()

are not necessarily countable, Mercer theorem does not hold.

@ Fourier transforms provide a convenient extension for translation
invariant kernels, i.e., kernels of the form K(x,y) = p(x —y).

@ Harmonic analysis also bring kernels well beyond vector spaces, e.g.,
groups and semigroups
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Translation invariant kernels on R?

Definition
A kernel K : RY x R? = R is called translation invariant (t.i.), or
shift-invariant, if it only depends on the difference between its argument,
i.e.

\V/X,yGRd, K(X~y):(70(xiy)

for some function ¢ : R — R. Such a function ¢ is called positive
definite if the corresponding kernel K is p.d.

252 /785



Translation invariant kernels on R?

Definition
A kernel K : RY x R? = R is called translation invariant (t.i.), or

shift-invariant, if it only depends on the difference between its argument,
i.e.:

\V/X,yGRd, K(X~y):[70(xiy)
for some function ¢ : R — R. Such a function ¢ is called positive

definite if the corresponding kernel K is p.d.

Theorem (Bochner)

A continuous function ¢ : R — R is p.d. if and only if it is the
Fourier-Stieltjes transform of a symmetric and positive finite Borel
measure € M(RY), i.e:

Vo €RY, plw) = [ e du(x)

252 /785



RKHS of translation invariant kernels

Theorem

Let K(x,t) = ¢(x —t) be a translation invariant p.d. kernel, such that ¢
is integrable on RY as well as its Fourier transform ¢. The subset H of
L, (Rd) that consists of integrable and continuous functions f such that:

A 2

171 = s | 1Sl

= = w < 100,
= o S (@)

endowed with the inner product:

(Frg)y = 1 /Rdf(w)g(w)dw

is a RKHS with K as r.k.
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Proof

o H is a Hilbert space: exercise.
o For x € RY, Ki(y) = K(x,y) = ¢(x —y) therefore:

Ky(w) = /ein”cp(u —x)du = e*"“’Txgﬁ(w).
@ This leads to Ky € H, because:
N 2
/ L] I
——— < P(w) | < oo,
re  P(w) Rd

@ Moreover, if f € H and x € R, we have:

Ll [ R@F@ L [ e ey
{7 b = /]R o) T 2y /]Rdf( e

g
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Example

Gaussian kernel

(x=y)
K(xy)=e 22
corresponds to:
t2
p(t) =e 22
0'20.)2
Plw)=e" 2

and

o o e

In particular, all functions in H are infinitely differentiable with all
derivatives in L.
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Example

Laplace kernel

corresponds to:

and

H:{f:/‘z?(w)r(vz:/wz)dw<oo},

the set of functions L2 differentiable with derivatives in L2 (Sobolev
norm).

256
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Example

Low-frequency filter

corresponds to:

and

the set of functions whose spectrum is included in [, Q].

K (x,y) = sinﬂ(_i((xy)}/))
o(t) = S|n7£i2t)

H = {f:/|w>ﬂ‘f(w)‘2dw—0},
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Recap on Green, Mercer, Bochner families

Up to specific assumptions for each of the following kernel families,

Kernel RKHS H
Green | Green func. of D*D Ly(X) with (Df, Dg),(x)
00 00 o 32
M = : K
ercer Z A ()i (y) {f Z EpLip " < —i—oo}
k=1 k=1 k=1
7’(‘ 2
Fourier | k(x—y) x f e Ly(RY) :/ | A(w)| dw < +o0
. N—— n(w)
%(w)e/w(xfy) dw +continuous
+integrable
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Recap on Green, Mercer, Bochner families

Up to specific assumptions for each of the following kernel families,

Kernel Squared Norm ||.3,
Green Gozeen func. of D*D HDfH%Q(X)
a oo
Mercer Z)\kwk(x)wk y Z K for f =300 1 artx
k=1
Fourier | k(x —y) / e
Y 27r)d
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Outline

© The Kernel Jungle
@ Green, Mercer, Herglotz, Bochner and friends

@ Generalization to semigroups
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Generalization to semigroups (cf Berg et al., 1983)

Definition
@ A semigroup (S, 0) is a nonempty set S equipped with an
associative composition o and a neutral element e.
@ A semigroup with involution (S, 0, %) is a semigroup (S, o) together
with a mapping * : S — S called involution satisfying:
Q (sot)"=t*os* fors,teS.
Q (s*)" ' =sforseS.

Examples
@ Any group (G, o) is a semigroup with involution when we define
=g L
@ Any abelian semigroup (S, +) is a semigroup with involution when
we define s* = s, the identical involution.

261 /785



Positive definite functions on semigroups

Definition
Let (S, 0, %) be a semigroup with involution. A function ¢ : S — R is
called positive definite if the function:

Vs,teS, K(s,t)=p(s"ot)
is a p.d. kernel on S.

Example: translation invariant kernels

(Rd, +, —) is an abelian group with involution. A function ¢ : RY — R
is p.d. if the function

K(x,y) = ¢(x —y)

is p.d. on RY (translation invariant kernels).
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Semicharacters

Definition
A function p : S — C on an abelian semigroup with involution (S, -+, *)
is called a semicharacter if

9 p(0) =1,

Q p(s+t) = p(s)p(t) fors,t € S,

Q p(s*) =p(s) fors € S.
The set of semicharacters on S is denoted by S*.

Remarks
o If x is the identity, a semicharacter is automatically real-valued.

o If (S,+) is an abelian group and s* = —s, a semicharacter has its
values in the circle group {z € C| | z| = 1} and is a group character.
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Semicharacters are p.d.

Lemma

Define K(s,t) := p(s + t*). Then, the semicharacter p is p.d., in the
sense that

o K(s,t) = K(t,s),
° > 71 aigiK(xi, %) > 0,

Proof

Direct from definition, e.g.,

n n
Z aiaip (xi +x7) = Z ajajp (xi) p(xj) = 0.
ij=1 ij=1
Examples
o o(t) = et on (R, +, Id).
o o(t) =e“ton (R, +, ).
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Integral representation of p.d. functions

Definition
@ An function a : S — R on a semigroup with involution is called an absolute
value if (i) a(e) =1, (ii)a(so t) < as)a(t), and (i) a(s*) = afs).

@ A function f : S — R is called exponentially bounded if there exists an
absolute value o and a constant C > 0 s.t. | f(s)| < Ca(s) for s € S.

Theorem

Let (S, +, x) an abelian semigroup with involution. A function ¢ : S — R is p.d.
and exponentially bounded (resp. bounded) if and only if it has a representation
of the form:

o(s) = / A()dn(p).

where p is a Radon measure with compact support on S* (resp. on S, the set
of bounded semicharacters).
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Proof

Sketch (details in Berg et al., 1983, Theorem 4.2.5)

@ For an absolute value «, the set P{* of a-bounded p.d. functions
that satisfy ¢(0) = 1 is a compact convex set whose extreme points
are precisely the a-bounded semicharacters.

@ If v is p.d. and exponentially bounded then there exists an absolute
value a such that ¢(0)~1p € P{.

@ By the Krein-Milman theorem there exits a Radon probability
measure on P{ having ¢(0)~!y as barycentre.

Remarks

@ The result is not true without the assumption of exponentially
boundedsemicharacters.

@ In the case of abelian groups with s* = —s this reduces to
Bochner's theorem for discrete abelian groups, cf. Rudin (1962).
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Example 1: (R, +, Id)

Semicharacters
e S = (R4, +,/d) is an abelian semigroup.
e P.d. functions are nonnegative, because ¢(x) = ¢ (\/7<)2
@ The set of bounded semicharacters is exactly the set of functions:

as

s ERL = pa(s) = e,

for a € [0, +00] (left as exercice).

@ Non-bounded semicharacters are more difficult to characterize; in
fact there exist nonmeasurable solutions of the equation

h(x +y) = h(x)h(y).
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Example 1: (R;,+,/d) (cont.)

P.d. functions
@ By the integral representation theorem for bounded semi-characters
we obtain that a function ¢ : R, — R is p.d. and bounded if and
only if it has the form:

P6) = [ e du(a) + byw(s)
0
where 1 € M2 (Ry) and b > 0.

@ The first term is the Laplace transform of u. ¢ is p.d., bounded and
continuous iff it is the Laplace transform of a measure in M2 (R).
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Example 2: Semigroup kernels for finite measures (1/6)

Setting

@ We assume that data to be processed are “bags-of-points”, i.e., sets
of points (with repeats) of a space U.

@ Example : a finite-length string as a set of k-mers.

@ How to define a p.d. kernel between any two bags that only depends
on the union of the bags?

@ See details and proofs in Cuturi et al. (2005).
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Example 2: Semigroup kernels for finite measures (2/6)

Semigroup of bounded measures
@ We can represent any bag-of-point x as a finite measure on U:

X = § ai5x;7
i

where a; is the number of occurrences on x; in the bag.

@ The measure that represents the union of two bags is the sum of the
measures that represent each individual bag.

o This suggests to look at the semigroup (M?% (i), +, Id) of bounded
Radon measures on U and to search for p.d. functions ¢ on this

semigroup.
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Example 2: Semigroup kernels for finite measures (3/6)

Semicharacters

o For any Borel measurable function f : i/ — R the function
pr : ME (U) — R defined by:

pr(p) = el

is a semicharacter on (M5 (U),+).

e Conversely, p is continuous semicharacter (for the topology of weak
convergence) if and only if there exists a continuous function
f :U — R such that p = pr.

@ No such characterization for non-continuous characters, even
bounded.
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Example 2: Semigroup kernels for finite measures (4/6)

Corollary

Let U be a Hausdorff space. For any Radon measure € M (C (U))
with compact support on the Hausdorff space of continuous real-valued
functions on U endowed with the topology of pointwise convergence, the
following function K is a continuous p.d. kernel on M? (1/) (endowed
with the topology of weak convergence):

) — /C N e+ gy £

Remarks

The converse is not true: there exist continuous p.d. kernels that do not have
this integral representation (it might include non-continuous semicharacters)
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Example 2: Semigroup kernels for finite measures (5/6)

Example : entropy kernel

o Let X be the set of probability densities (w.r.t. some reference
measure) on U with finite entropy:

@ Then the following entropy kernel is a p.d. kernel on X" for all
6> 0:
K (X,X/) = efﬁh(x%x),

@ Remark: only valid for densities (e.g., for a kernel density estimator
from a bag-of-parts)
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Example 2: Semigroup kernels for finite measures (6/6)

Examples : inverse generalized variance kernel

o Let & = R? and MY (U) be the set of finite measure x with second
order moment and non-singular variance

T(u) = p o7 | = plx "

o Then the following function is a p.d. kernel on MY (i), called the
inverse generalized variance kernel:

1

K (/11,/1//) ==
det Y (%)

o Generalization possible with regularization and kernel trick.
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Application of semigroup kernel

[ — m
31,1 =0.0552 =), =0.0441 2| =0.0497
35, =0.0013 %), =0.0237 =7, =0.0139

Weighted linear PCA of two different measures, with the first PC shown.
Variances captured by the first and second PC are shown. The
generalized variance kernel is the inverse of the product of the two values.
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Kernelization of the IGV kernel

Motivations
@ Gaussian distributions may be poor models.

@ The method fails in large dimension

Solution
@ Regularization:

1
o) = (z(85) + M)

@ Kernel trick: the non-zero eigenvalues of UUT and UT U are the
same = replace the covariance matrix by the centered Gram
matrix (technical details in Cuturi et al., 2005).
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[llustration of kernel IGV kernel

0.276 0.168 0.184
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Semigroup kernel remarks

Motivations

@ A very general formalism to exploit an algebraic structure of the
data.

o Kernel IVG kernel has given good results for character recognition
from a subsampled image.

@ The main motivation is more generally to develop kernels for
complex objects from which simple “patches” can be extracted.

@ The extension to nonabelian groups (e.g., permutation in the
symmetric group) might find natural applications.
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Outline

© The Kernel Jungle
@ Green, Mercer, Herglotz, Bochner and friends

@ Proof of Bochner’'s theorem
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Translation invariant kernels on Z

Definition
A kernel K : Z x Z — R is called translation invariant (t.i.), or
shift-invariant, if it only depends on the difference between its argument,
i.e.

Vx,y €Z, K(x,y)=ax_y
for some sequence {a,},.;. Such a sequence is called positive definite if
the corresponding kernel K is p.d.
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Translation invariant kernels on Z

Definition
A kernel K : Z x Z — R is called translation invariant (t.i.), or
shift-invariant, if it only depends on the difference between its argument,
i.e.

Vx,y €Z, K(x,y)=ax_y
for some sequence {a,},.;. Such a sequence is called positive definite if
the corresponding kernel K is p.d.

Theorem (Herglotz)

A sequence {an}, 7 is p.d. if and only if it is the Fourier-Stieltjes
transform of a positive measure p € M(T), the set of finite Borel
measures on the torus [0, 27] with 0 and 27 identified.
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Fourier-Stieltjes transform on the torus

Let T the torus [0, 27] with 0 and 27 identified
C(T) the set of continuous functions on T
M(T) the finite complex Borel measures? on T

M(T) can be identified as the dual space (C(T))*: for any
continuous/bounded linear functional ¢ : C(T) — C there exists
1 € M(T) such that ¢(f) = 5= [ f(t)du(t) (Riesz theorem).

Definition (Fourier-Stieltjes coefficients)

For any p € M(T), the Fourier-Stieltjes coefficients of y is the sequence:

1 .
VneZ, i(n)= - /T e~ dlu(t)

This extends the standard Fourier transform for integrable functions by
taking du(t) = f(t)dt.

2a measure defined on all open sets
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Examples

@ Diagonal kernel:

1 . 1 ifn=0
= dt = i = — Intdt = ’
M . an=fi(n) o /T € {0 otherwise.

The resulting kernel is K(x,t) = 1(x = t).
@ Constant kernel: for C > 0,

p=2mCoy, an=jn)= C/ e™so(t) = C,
T

resulting in K(x,t) = C
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Proof of Herglotz's theorem: <«

If a, = fi(n) for u € M(T) positive, then for any n € N, x1,...,x, € Z
and z1,...,z, €R (or C) :

SN an = e 30> a7 [ e (e

i=1 j=1 /111

230 ag [ eetann

/1]1

— \ZZje"xfthM(t)
T 5
O

283 /785



Proof of Herglotz's theorem: = (1/4)

o Let {an},cz @ p.d. sequence
o Foragivent € Rand N € N let {z,},., be

et if |n| <N,
Zn = .
0 otherwise.

o Since {a,},cz is p.d. we get:

NN NN
0< Z Z ak—12kZ| = Z Z ay_ et
k=—N I=—N k=—N I=—N
2N
= ) (2N +1— |k|)ae™
k=—2N
k| ikt
= (2N+1)Zmax (0,1 2N+1) axe

keZ

oan(t)
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Proof of Herglotz's theorem: = (2/4)

e duy = opn(t)dt is a positive measure (for N even) and satisfies

N

. 1 Ul i(n—j [l
_72 P I O A i(n=0t — 3 m 1—
fin(n) 27 Naj< N—l—l)/]re ? ax<0, N+1

J==

@ Moreover

o laamy = sup / F(t)on(t)dt
I flloo<1JT

= / on(t)dt (take f =1 because op(t) > 0)
T

& ||
— int
= E /Ta,,<1—N+1>e dt

n=—N

:ao
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Proof of Herglotz's theorem: = (3/4)

e For any trigonometric polynomial of the form
P(t) = Z,’f:_K bre™t, with Fourier coefficient P(n) = b, we have

jim /TP(t)duN(t)

N—+o00
K N |n|
= lim Z Z /a,,bk <1— >e'(n—k)tdt
N—>+Ook “K N T N+1
- n
- be lim (1-
k;Kak kN—LT—oo( N+1>
K
= Z akbk
k=—K
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Proof of Herglotz's theorem: = (4/4)

This shows that W(P) =3, ., axP(k) is a linear functional over
trigonometric polynomials, with norm < ag

It can be extended to all continuous functions because trigonometric
polynomials are dense in C(T)

By Riesz representation theorem, there exists a measure p € M(T)
such that || 1 ||y < a0

vF € C(T), W(f) = /T F(£)dpu(t)
Taking f(t) = e gives

o) = [ () = v(e™) = a,
Furthermore 1 is a positive measure because if f > 0

/f(t)du(t):lll(f): lim W)= lim W(P)>0 O
T

n—+00 n,k—~+o0o
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Translation invariant kernels on R?

Definition
A kernel K : RY x R? = R is called translation invariant (t.i.), or
shift-invariant, if it only depends on the difference between its argument,
i.e.

\V/X,yGRd, K(X~y):(70(xiy)

for some function ¢ : R — R. Such a function ¢ is called positive
definite if the corresponding kernel K is p.d.
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Translation invariant kernels on R?

Definition
A kernel K : RY x R? = R is called translation invariant (t.i.), or

shift-invariant, if it only depends on the difference between its argument,
i.e.:

\V/X,yGRd, K(X~y):[70(xiy)
for some function ¢ : R — R. Such a function ¢ is called positive

definite if the corresponding kernel K is p.d.

Theorem (Bochner)

A continuous function ¢ : R — R is p.d. if and only if it is the
Fourier-Stieltjes transform of a symmetric and positive finite Borel
measure € M(RY), i.e:

Vo €RY, plw) = [ e du(x)
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Fourier-Stieltjes transform on R?

o Co(RY) the set of continuous functions on RY that vanish at infinity
o M(RR?) the finite complex Borel measures on R9

o M(RY) can be identified as the dual space (Go(R9))": for any
continuous/bounded Iinear functional ¢ : Co(Rd) — C there exists
1 € M(R?) such that ¢(f) = [pa F(t)du(t) (Riesz theorem).
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Fourier-Stieltjes transform on R?

@ This extends the standard Fourier transform for integrable functions
by taking du(x) = f(x)dx.

o For u € M(RY), jiis still uniformly continuous, but /i(w) does not
necessarily go to 0 at infinity (e.g., take the Dirac p = dp, then
fi(w) =1 for all w)

o Parseval's formula: if u € M(RY), and both g, g are in L}(R9), then

1 A A
/Rd g(x)du(x) = (2r)? /Rd g(w)i(—w)dw .

In particular, if g € LY(RY) N L2(RY),
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Proof of Bochner's theorem: <

If o = [i for some u € M(T) positive, then for any n € N,
X1,...,Xp €RY and z;,...,2z, €R (or C) :

i Z zZjp (xi — Z Z 2z / e 0x) dt)

i=1 j=1 i=1 j=1
Y as [ e e
i=1 j=1
—ix]
= [ 13 Pty
RY
> 0.

If 1 is symmetric then, in addition, ¢ is real-valued.
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Proof of Bochner's theorem: = (1/5)

Lemma
Let ¢ : R — R continuous. If there exists C > 0 such that

2 x€ER

= [ §(€)s0(—§)d£‘ < Cepl a6
R

for every continuous function g € L1(R) such that & is continuous and
has compact support, then ¢ is the Fourier-Stieljes transform of a
measure p € M(R).

Proof: Let G C Co(RR) be the set of functions g E LY(R) such that g is
continuous and has compact support. W : g — 5- ng £)e(—&)d¢ is
linear and continuous on G, and can be extended to Cy(R) by density of
G. By Riesz theorem there exists 1 e M(R) such that

V(g) = Jpe(x)du(x) = & [ 8(§)A(—€)dE, using Parceval's formula

for the second equallty ThIS must hold for all g, so ¢ = fi. g
Note: the converse is also true.
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Proof of Bochner's theorem: = (2/5)

We consider d = 1. Generalization to d > 1 is trivial.

@ Let p: R — R continuous and p.d.

e For any A > 0, the sequence {¢(n\)}, ., is p.d., so by Herglotz's
theorem there exists a positive measure uy € M(T) such that

@(An) = fix(n),

and || x [|m(ry = 2A(0) = ¢(0).
o Let g € LY(R) continuous such that g is continuous and has
compact support.

@ For any € > 0 there exists A > 0 such that

- [t < |5 Zg (n)p(—m) | +¢.

by approximating the integral by its Riemann sums (where the width
of each rectangle is \).
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Proof of Bochner's theorem: = (3/5)

GA(t) = Z g (H—iﬂm>

meZ

@ Fort €T let:

@ Given the regularity and decay of g, we can find a sufficiently small
A to ensure

sup| Gx(t) | < sup|g(x)|+¢
teT x€ER
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Proof of Bochner's theorem: = (3/5)

@ In addition, for any n € Z:

G (n) = 217r/ei”tG,\(t)dt
()«

mEZ
)\ 27t (m+1)
-~ A e—in()\u+27rm)g(u)du
27 2mm
meZ” "X
2m(m+1)
_ A A —inAu
= — e g(u)du
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Proof of Bochner's theorem: = (4/5)

@ This gives:

= Z Ga(n)fin(—n)

neZ
:’1/ GA(t)duA(t)‘ (Parceval)
27[' T

< |l i |mery sup | Ga(t) |
teT

25 En)e(-n)

nezZ

< Csup| GA(1) |
teT

< Csup|g(x)|+ Ce
xeR

with C = ¢(0).
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Proof of Bochner's theorem: = (5/5)

e Putting it all together gives:

' [ &9 dg' < Csup | g(x)| + (C +1)e

@ This is true for all € > 0 which implies

1/3(@@(_5)&' < Csup|g(x)]|

2w R xeR

@ We conclude from the lemma that ¢ = /i for some p € M(R), which

satisfies )
o Je §)dt = /

e When g > 0, this is approximated by - 5= |7 Ga(t (t)dp(t) for small X,
which is > 0 because ) is a positive measure and Gy > 0 like g.
Consequently, 1 is a positive measure. O
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Outline

© The Kernel Jungle
@ Green, Mercer, Herglotz, Bochner and friends

@ Proof of Mercer's theorem
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An important lemma

The linear operator

o Let v be any Borel measure on X, and L2 (X) the Hilbert space of
(equivalence classes of) square integrable functions on X.

o For any function K : X2 — R, let the transform:

VF e L2(X), (Lkf)(x) :/K(x,t)f(t) dv(t).

Lemma

If K is a Mercer kernel, then Lk is a compact and bounded linear
operator over L2 (X), self-adjoint and positive.
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Proof (1/6)

Ly is a mapping from L2 (X) to L2 (X)
For any f € L2 (X) and (x1,x1) € X%

(L) (xa) — (LieF) (x2) | = ' [ K00~ K b ) F (v (1)

= (K — K> f>L,%(X)

< K = Ko llz @)1 F lliz )
(Cauchy-Schwarz)

< Vo (R) max| K (x1,8) = K (x2,8) |7 130

K being continuous and X compact, K is uniformly continuous,
therefore Lk f is continuous. In particular, Lixf € L2 (X) (with the slight
abuse of notation C (X) C L2(X)). O
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Proof (2/6)

Lk is linear and continuous
o Linearity is obvious (by definition of Lk and linearity of the integral).
o For continuity, we observe that for all f € L2 (X) and x € X

|(Lxf) (x) | = ‘/K(x,t)f(t) dv (t)
< Vv (X) max| K (x,t) [ £ 13 x)

< VY (X)Ckll Iz

with Cx = maxyex | K (x,t) | < +o0o. Therefore:

Lk iz = ( )@ av (t)) " <0 (%) Gkl Fllzee. O
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Proof (3/6)

Criterion for compactness

In order to prove the compactness of L we need the following criterion.
Let C(X') denote the set of continuous functions on X’ endowed with
infinite norm || f ||oo = maxxex | f () |.

A set of functions G C C (X) is called equicontinuous if:

Ve > 0,36 > 0,V (x,y) € &2,
[x—yl|<d = VgeG,lg(x)—g(y)|<e

Ascoli Theorem

A part H C C(X) is relatively compact (i.e., its closure is compact) if
and only if it is uniformly bounded and equicontinuous.
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Proof (4/6)

Lk is compact

Let (f5),,>0 be a bounded sequence of L2(X) (Il fallz(ay < M for all n).
The sequence (Lkfn),q is a sequence of continuous functions, uniformly
bounded because:

I Lifalloo < Vv (X)Ckll fall 32y < Vi (X)Ck M.

It is equicontinuous because:
| Lkf, (Xl) — Lty (X2) ‘ < \/IJ(X) r;nea)z(| K(Xl,t) = K(Xz,t) | M.

By Ascoli theorem, we can extract a sequence uniformly convergent in
C(X), and therefore in [2(X). O
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Proof (5/6)

L is self-adjoint

K being symmetric, we have for all f, g € L2 (X):
(F, L)z = [ () (Le) () v ()

//f (x,t) dv (x) dv (t) (Fubini)
(Lf,g) 12(x) -
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Proof (6/6)

Lk is positive
We can approximate the integral by finite sums:

VL) 1o ) = // £(£) K (x,£) v (dx) v (dt)

v (X)
:kll—>ngo k2

Z K (X,',XJ') f(Xi) f (Xj)

ij=1
>0,

because K is positive definite. [
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Main result

Mercer’'s Theorem

Let X be a compact metric space, v a nondegenerate? Borel measure on
X, and K a continuous p.d. kernel. Let A\; > Ay > ... > 0 denote the
nonnegative eigenvalues of Lk and (1,2, ...) the corresponding
eigenfunctions. Then all functions 1, are continuous, and for any
x,teX:

K (x,t) = 3 Mo (x) 0 1)
k=1

where the convergence is absolute for each x,t € X', and uniform on
X x X.

“i.e., v(U) > 0 for any nonempty open set U C X
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Proof of Mercer's Theorem (1/6)
For any k > 1 such that Ay > 0, ¢x € H (RKHS of K)

If Ak > 0, we have

Vx € X, Yi(x)= /\lkLKwk(X)

1
— /\k/K(x,th(t)dV(t)

= lim v() Zth Ur(t

n—+oo A\xn

hn(x)

for a set t1,tp,... conveniently chosen. Besides, h, € H for any n € N
and, for any n,m € N,

{hn, him) gy = JK(tit)).

i=1 j=1
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Proof of Mercer's Theorem (2/6)

For any k > 1 such that A\, > 0, ¥, € H (cont.)

Therefore,

lim  (hp, hm) )\2// (t, )i (t)Uk (V) dv(t)dv(t) := R,

n,m—-+o0o

and

n,m—o0o

| An—hum 13 = (Bny hnYay+{Am, hmd2;—2 (Bny Am)qy ——— R+R—2R = 0.

(hn)nen is therefore a Cauchy sequence in H, which converges to a
function h € H. In particular, for any x € X,

h(x) = lim ha(x) = Yi(x),

n—-+o00

and finally ¢y = h = € H. O
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Proof of Mercer's Theorem (3/6)

{\/)\u/)k DA > 0} in an orthonormal system (ONS) of H
Let i,j > 1 such that A, \; > 0. Then v/Ajbi, \/Aj); € H and

(Vi /A, = <¢1r / Kei(t)du(t), v, \/Wj>%
_ \g [ it
_ \E [ siov@an)

:(5,"]'. Il
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Proof of Mercer's Theorem (4/6)

For any x € X, 37, oo Mthi(X)* < Ci
For any x € X, Ky € H and ||K,||3, = K(x,x) < Ck.

Therefore, since {/ Atk : Ak > 0} is an ONS of :

Cr > [|Kxll%
2
2 Z <Kxa m¢k>?—[
k:Ax>0

= > M(x)?. O

k: A >0

310/785



Proof of Mercer's Theorem (5/6)

For any x € X', t — Y. \jphi(x)1;(t) convergences uniformly to a
continuous function Sx

For any fixed x € X', we therefore have, for any t € X (restricting the
sum to the indices i > 1 such that A; > 0):

m-+4 m-+4 % m-+¢ %
Z Ahi()hi(E) < (Z Aii(x) > (Z A,-w,-(t)2>
m+/
< Ck <Z >\i1/1i(x)2> :

i=m

ol S
Il

which tends to 0 uniformly in t € X’. Therefore the series of functions
t — > \iwi(x)vi(t) is uniformly Cauchy, continuous, and therefore
convergences uniformly to a continuous function g.
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Proof of Mercer's Theorem (6/6)

Ky = gx in L(v)

On the other hand, we can expand Ky over the ONB {¢, k > 1} of
L2 (X):

K=Y (K $i) i3 ) Yk

k>1

= > (Lebw) ()

k>1

= Metb(X) e

k>1

= > Mtk

k>1:X>0

therefore Ky = gx in La(v), i.e., ||Kx — &xll,) = 0.
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Proof of Mercer’'s Theorem (5/5)

Conclusion

Since v in nondegenerate, and both Ky and gx are continuous, this
implies

VEe X, Ky(t)=g(t) = Z_ Aii(x)(t) ,

and the convergence is uniform in X x X because K is continuous.

313 /785



Outline

© The Kernel Jungle
@ Green, Mercer, Herglotz, Bochner and friends

@ Convergence rates of KRR for Mercer kernels
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Isomorphism betwwen H and L2 (X)

o We saw that

L2 L2 (X) > H
Z ajp; — Z aiv/ i
i—1

i=1

is an isomorphism betwwen H and L2 (X), i.e.,
1
VEeLZ(X), | fllzay = LEfllx,
and conversely,
_1
VEeH, [fllu=ILfllz-

@ This can be useful to compute L2 (X) norms using RKHS theory,
e.g., to study the performance of kernel ridge regression (KRR)
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Remember KRR

e Given (x1,...,%x,) € X" and (y1,...,¥n) € R”, KRR solves for any
A > 0:

n

2 .1 2 2
fy, = argmin=— vi—fF (X)) + M| fl5 .
gming > 01— () <1

@ The solution is

A(x) = Za,-K(x,-,x), where ac = (K + Anl) ty.
i=1
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Model

@ Let K be a Mercer kernel over the compact set X and
nondegenerate probability measure v (i.e., v(X) =1). Let
A1 > A2 > ... > 0 be the eigenvalues of Ly, {¢;,i > 1} the
eigenvectors, and {cp; = Vi, i > 1} an ONB of H.

@ Let (X, Y) be random variables with distribution P, such that
X € X has distribution v
and
Y =F*(X)+e where f*cH and e~ N(0,0?%).

o We assume (X, y;)i=1,...,n are i.i.d. realizations of (X, Y).

@ We want to estimate the performance of KRR in terms of mean

squared error:
MSE(f,) = E(Y — £(X))?.
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Decomposition of the MSE

Lemma

Let 3* € (2 such that f* =" .o, Brpj, let Py the n x co matrix given
by ®n = (0j(Xi))1<i<pmicicioo - ad T : €2 — L2 be the diagonal
operator T (a1, az,...) = (A1a1, A2az,...).
Then it holds

MSE(f) — MSE(f*) = By + V4,

where
—1
By =E|T* <| _ (qﬂcbn 4 )\nl) ¢I¢n> 8%,
—1
VA =E| T (07004 Anl) ~ @]e?.

This corresponds to a classical decomposition of excess MSE as " bias +
variance”. Note that B) increases with A, but V) decreases with A.
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Decomposition of the MSE: Proof (1/5)
o Since € is independent of X and fy, and Ee = 0 we have
R . 2
MSE(f\) = E (f*(X) — AX) + e)
R 2
_F (f*(X) - fA(X)> +Eé
=E|| £ — AT ) + MSE(").
o Using the isometry between L2 (X) and H, we obtain

MSE(fy) — MSE(f*) = E|| L3 (f* — A) |I3 -
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Decomposition of the MSE: Proof (2/5)

o {pi=+Aivi} ,i > 1is an ONB of H, we can define the linear
isomorphism:

e H — (2
f= Za;ga,- — (al, an.. .)T
i>1
@ In other words,
e(f)i = <f790i>7-[ .

@ In particular, for any x € X,

e(Kx) = (¢1(x), p2(x),...)"

o In that base Ly is a diagonal operator 7 = diag(\1, A2, ...), i.e.,

VF =Y aipieH, e(Lxf)=Te(f)=(May, hoar,...)"
i>1
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Decomposition of the MSE: Proof (3/5)
o Let &, = (e(Ky,),...,e(Ky,)) ', ie.,
b, = ((pj(xi))lgign;lgj<+oo )
o Then A = -7 1 aiK, translates to
e(h) = Za;e(Kxi) =¢'a.

i=1
@ Notice that

[(Dn(b;)r]lj = <e(KX,')a e(KXj)>gZ = <KX,'7 KXJ‘>'H = K(X,‘,Xj),
so &,0! =K and a = (K + Anl) !y translates to
-1
o= (CD,,CDI + )\nl) y.

o Putting it all together, and using the matrix inversion lemma:

e(h) = oF (CD,,¢I + )\nl)_l y= (cbjcbn + )\nl>_1 oy,
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Decomposition of the MSE: Proof (4/5)

o Let B* = (B7,55,...) =e(f*), e,

fr=> Broi.

i>1

In particular, for any x € X,

£ (x) = (f7, Ka)y = (8%, e(Ke))pe -

@ Then y; = f*(x;) + ¢ for i =1,...,n translates to
y = (Dn:@* + Ea

where € = (e1,...,6,)".
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Decomposition of the MSE: Proof (5/5)
@ This gives
A T -1 T
e(F = h) =B~ (®5 0, + Anl) O] (®,8" +¢)
—1 -1
_ <| _ (¢I¢n + )\nl) d>;<b,,> g — (qﬂcbn + Anl) oTe,
and therefore, since € is independent of ®,:
3 * ' 2 3 * ra 2
Bl LA~ A) =Bl (Lt~ £)) I
1 A
—E|| The (F = A)) I
~1
= E|T? <| — (@7 @, + Ant) CDICD,,) B8 1%
-1
FE||T? (¢I¢n + Anl) olel2. O
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Simplification
@ B, and V) depend on the data through d),,CDI, which is a random

operator (% — (2,

o For "large n”, we note that, for any /,j > 1:

[%‘Dﬂ i D @ilxk)ei(xe) = 1 (i 0j) 13y = 1y/HiT05
k=1

so
®,d) ~nT .
@ We now study By and V) under the approximation ”¢,,¢I =nT"
(and call By and V) the corresponding approximations).

o The difference between B, and B, (resp. V) and \7,\) can be
studied rigorously but will not change much the main results we will
get; see, e.g., Dicker et al. (2015) for details.
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Upper bounds on the bias and variance

Theorem
For any J > 1,
D )‘2 * (12
By < )\*+)\J+1 £ 0%
J
and N
- _ 0 sy i
Ve < — |y &=
A= n + 4\

The integer J (and ) will be optimized later, depending on the
assumptions we make on f* and on the decrease of A;.
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Proof: bias (1/2)
o Using 7 = diag(\;;i > 1) and ¢,9, = nT, we get

~1
T2 <| - (cb,,T(D,, + Anl) ¢I¢n> — diag <AAC 1> ,

and therefore, for any J > 1:

O ) = A )
B, =S5 N (p _ AN g2
2o 2 )
@ For the first term, we use the fact that ()\i)\) < 1, and that
Ai > Ay fori < J, to get
ZJ: A2\ ZJ: A2 2 (52
11Q+A, — ,A+A

2 < 2 _ N 2
< 92 < 20 g% |12, |
SICHE v
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Proof: bias (2/2)

@ For the second term, we use the fact that e < 1, and that

Ai < Ayyq fori > J+1, to get

)\+)\ )2

e )\2 00
Y GBS A X (B < Al B -

i>J+1 i>J+1

o Noting that || 8" ||,z = || f* ||, we finally get

- 22 .
Brs (3 + ) 17 B ©
J
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Proof: variance (1/2)
Using 7 = diag(\;;i > 1), ®,®] = nT and Eee " = o2l, we get
Vy =E| T2 (CD,,ch,, + )\nl)_l o) elZ
= LE|THT ) ole
= %ETrace [T% (T+A) o] eeTd, (T+AN)! T%}
= %Trace [T% (T+A) 1o/ E (€€T> &, (T + A1 T%}
— T Trace THT+ )T (T 4+ ) T

n
“+oo
A

o2 [ 2
- S X

i=J+1
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Proof: variance (2/2)

2
o For the first term, we just use ()\;\Fi'A)Q <1 to get
J 2
L J.
Py (N + )\)2 o

@ For the second term, we use the fact that t — —~; reaches its

(t+)\)
maximum at t = A\ equal to ﬁ, therefore

f A2 Z+ J41 A
Pyt (N +2A)2 — 4\

@ Combining both terms finally gives

+
~ o? ZJ+1
vy < — . O
)‘_n 4 ]
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Corollary: rates of convergence of KRR

o Polynomial-decay kernels. Suppose there are constants C > 0 and
s>1suchthat 0 < \; < Ci~°fori=1,2,.... Let A= n" s,
Then

Bat i< o{(If B +o?) s}
o Exponential-decay kernels. Suppose there are constants C > 0

and o > 0 such that 0 < \; < Ce ™ for i =1,2,.... Let
A = n~tlog(n). Then

.. |
BA+VA§O{(IIf*\|%[+a2)°g§")}.

o Finite rank kernels. Suppose there is J > 1 such that
Aj=Ms1=...=0. Let \=n"1. Then

.. i J
BA—i—V,\SO{(Hf \|§{+a2)n}.
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Remarks

@ The same result holds for By + V), see Dicker et al. (2015, corollary
1-4). We follow and adapt their proof.

@ The constants in the "big-O" notation only depend on the kernel K
and the measure dv(x).

@ The rates are minimax optimal (Caponnetto and De Vito, 2007).

o In particular, for polynomial-decay kernels, By/(r) C L2 (X) is a
Sobolev space of g — 1 times absolutely continuous and
differentiable functions f with || f9 ;2 (x) < +00, for s =2q. We
recover the standard optimal convergence rate of nonparametric
regression n_% (Tsybakov, 2004).

o If we make additional assumptions on f*, e.g., not only > (87)?
but also "5, i7(B7)? for 7 >0, or 7 =0 for i > J, then we can
get faster convergence rate, which are also minimax optimal for the
class of functions considered. We say that KRR is adaptive
(Caponnetto and De Vito, 2007; Dicker et al., 2015).
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Proof for polynomial-decay kernels (1/3)

o Let Jsuch that A1 < A< A
@ For the bias, we immediately get
)\2

— <X and >\J+1 < )\7
AJ

therefore ; .
By < 2| F* |3, = 2n" 51 || £ |f3,.

o For the variance, we need to upper bound J and Zi2J+1 A

o A< \; < CJ3, therefore

1 1 1 1
JS CEAig = C;ns+1 .
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Proof for polynomial-decay kernels (2/3)

@ To upper bound the sum, let Jp = LC%ns%lJ + 1. Then:

+00 Jo ~+o00
DAi= >N+ DN
i=J+1 i=J+1 i=Jo+1
—+o00
< A+ C t~°dt
Jo

< Jon~ 1 + S_%Jé’s.
o Since Jo < Cinsi1 +1and 1< neii,
Jon™ 1 < (C% + 1) s
e Since Jy > C%n?lly

C Csnstt
J1—5<7
s—10 = s-1
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Proof for polynomial-decay kernels (3/3)

@ Therefore the sum is upper bounded by

Z A << +1>n1+_f.
i=J+1
o Finally,
. 2 Too N s
0= 2 |y 20N, ]
n 4

2 —S S
<Z C%ns%l—i-1 ° : 1 niTlnfsTl
~n 4 \s—1

2 1 =S
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Proof sketch for exponential-decay kernels

@ We proceed similarly.
e From A < A\, we deduce J < O(log(n)).
o Using Jo = [ " log(n)] + 1 we deduce Y75 ;1 A <0 (M)

o Details left as exercice; see Dicker et al. (2015, corollary 2). [
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Proof for finite-rank kernels

@ We use a simpler upper bound on By: using the fact that

oy < an forany t,and \; =0 for i > J.

~ A
By < Z| 3.
< I I
@ For the variance, our bound simplifies to
2

Vy < —=.
n

o Taking A = n~! and summing this inequalities gives the result.
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Outline

© Kernels and RKHS

© Kernel tricks

© Kernel Methods: Supervised Learning

@ Kernel Methods: Unsupervised Learning

© The Kernel Jungle

o Kernels for probabilistic models

@ Characterizing probabilities with kernels
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Motivation

Kernel methods are sometimes criticized for their lack of flexibility: a
large effort is spent in designing by hand the kernel.

Question
How do we design a kernel adapted to the data?
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Motivation

Kernel methods are sometimes criticized for their lack of flexibility: a
large effort is spent in designing by hand the kernel.

Question

How do we design a kernel adapted to the data?

Answer

A successful strategy is given by kernels for generative models, which
are/have been the state of the art in many fields, including
representation of image and sequence data representation.

Parametric model
A model is a family of distributions

{Py,0 € © CR™} C M (X).
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Outline

© The Kernel Jungle

o Kernels for probabilistic models
@ Fisher kernel
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Fisher kernel

Definition
e Fix a parameter 0y € © (obtained for instance by maximum
likelihood over a training set).

@ For each sequence x, compute the Fisher score vector:
¢90(X) = V@ Iog Pg(X)|9:90 y

which can be interpreted as the local contribution of each parameter.
@ Form the kernel (Jaakkola et al., 2000):

K (X, X/) = ¢90(X)T|(90)71¢90(X/) )
where 1(6p) = E [®g,(x)Pg,(x) "] is the Fisher information matrix.

Note: when 6 is the ML estimator, E[®g,(x)] = 0 and I(6p) is a
covariance matrix.
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Fisher kernel properties (1/2)

@ The Fisher score describes how each parameter contributes to the
process of generating a particular example

o A kernel classifier employing the Fisher kernel derived from a model
that contains the label as a latent variable is, asymptotically, at least
as good as the MAP labelling based on the model (Jaakkola and
Haussler, 1999).

@ A variant of the Fisher kernel (called the Tangent of Posterior
kernel) can also improve over the direct posterior classification by

helping to correct the effect of estimation errors in the parameter
(Tsuda et al., 2002).
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Fisher kernel properties (2/2)

Lemma
The Fisher kernel is invariant under change of parametrization.

@ Consider indeed a different parametrization given by some

diffeomorphism A = f(#). The Jacobian matrix relating the
parametrization is denoted by [J];; = g—f\{_.

@ The gradient of log-likelihood w.r.t. to the new parameters is
D), (x) = Vi log Py, (x) = JVg log Py, (x) = JPg,(x).
@ The Fisher information matrix is

I(Ao) = E [cho(x)cho(x)T = JI(60)J7.

o We conclude by noticing that 1(X\g) ™! = J~11(6p) LI T~ 1:

K (x,x) = gy (x) T1(80) gy (x') = D (x) T1(A0) TH P, (X).
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Fisher kernel in practice

@ ®y,(x) can be computed explicitly for many models (e.g., HMMs),
where the model is first estimated from data.

@ 1(6p) is often replaced by the identity matrix for simplicity.

o Several different models (i.e., different 6p) can be trained and
combined.

o The Fisher vectors are defined as g, (x) = 1(6g)~/?®g, (x). They
are explicitly computed and correspond to an explicit embedding:

K(x,X") = (%) "0y (X').
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Fisher kernels: example with Gaussian data model (1/2)

Consider a normal distribution A/(j1,0%) and denote by o = 1/0? the
inverse variance, i.e., precision parameter. With 6 = (u, ), we have

1 1 1
log Py(x) = 3 log ov — 5 log(27) — Ea(x — 1),

and thus

B B 0 log Py(x) _1 1
o = alx—p), da 2

and (exercise)

0= @)

The Fisher vector is then

B (x—p)/o
wo(x) = < (1/V2)(1 = (x — p)?/0?) ) '
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Fisher kernels: example with Gaussian data model (2/2)

Now consider an i.i.d. data model over a set of data points xi, ..., x, all
distributed according to N (u,0?):

Po(x1, ..., x HP(aXI

Then, the Fisher vector is given by the sum of Fisher vectors of the
points.

@ Encodes the discrepancy in the first and second order moment of
the data w.r.t. those of the model.

(8 —p)/o
Pl Z“””‘”(w A )
@ where .
f= %Z and &:%Z(X,J
i=1 i=1
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Application: Aggregation of visual words (1/5)

e Patch extraction and description stage:
In various contexts, images may be described as a set of
patches xi,...,x, computed at interest points. For example, SIFT,
HOG, LBP, color histograms, convolutional features...

o Coding stage: The set of patches is then encoded into a single
representation o(x;), typically in a high-dimensional space.

o Pooling stage: For example, sum pooling
n
Qp(xla s ,Xn) = Z@(xl)
i=1

Fisher vectors with a Gaussian Mixture Model (GMM) is a simple
and effective aggregation technique (Perronnin and Dance, 2007).
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Application: Aggregation of visual words (2/5)

Let 0 = (m), uj, X;j)j=1...k be the parameters of a GMM with k Gaussian
components. Then, the probabilistic model is given by

Po(x) = > mN(x; pj, X))

.
I M»
I,

Remarks
@ Each mixture component corresponds to a visual word, with a mean,
variance, and mixing weight.
e Diagonal covariances X; = diag (oj1, . ..,0j,) = diag (o) are often
used for simplicity.
@ This is a richer model than the traditional “bag of words” approach.

@ The probabilistic model is learned offline beforehand.
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Application: Aggregation of visual words (3/5)
After cumbersome calculations (exercise), we obtain pgy(x1,...,X,) =
[9071'1 (X), SRR @ﬂp(x)7 @Hl(x)Tv s ,QOHP(X)T, <P01(X)Tv s 7900'p(X)T]T7

with

SOHJ I‘I’J /UJ

SOO'j(X) \/ﬁzfy’l H’J /U _1]

i=1

where, with an abuse of notation, the division between two vectors is
meant elementwise and the scalars 7j; can be interpreted as the
soft-assignment of word / to component j:

WjN(X;; Hjs Uj)
Zle 7T//\/(X,';N/,U/)

Vi =
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Application: Aggregation of visual words (4/5)

Finally, we also have the following interpretation of encoding first and
second-order statistics:

Y oA
op,(X) = \/;?(“j_lfl'j)/aj
J
Vi a2 2y /2
(X) = —=(6; —07)/07,
@aj( ) \/ﬁ( J J)/ J
with
n 1 n 1 n
B= v and fy=—) yx and &= q(x - )
P R et =

The component ¢, (X) is often dropped due to its negligible contribution
in practice, and the resulting representation is of dimension 2kp where p
is the dimension of the x;’'s.

349 /785



Application: Aggregation of visual words (5/5)

o FVs were state-of-the-art image representations before the revival of
convolutional neural networks in 2012,
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Application: Aggregation of visual words (5/5)

o FVs were state-of-the-art image representations before the revival of
convolutional neural networks in 2012.

@ This is an unsupervised image representation of high dimension.
They remain competitive among unsupervised methods, see the
following table from Bojanowski and Joulin, 2017.

Method Acc@1]
Random (Noroozi & Favaro, 2016) 12.0
SIFT+FV (Sanchez et al., 2013) 55.6
Wang & Gupta (2015) 29.8
Doersch et al. (2015) 30.4
Zhang et al. (2016) 35.2
!Noroozi & Favaro (2016) 38.1
BiGAN (Donahue et al., 2016) 32.2
NAT 36.0

Table 3. Comparison of the proposed approach to state-of-the-art
unsupervised feature learning on ImageNet. A full multi-layer
perceptron is retrained on top of the features. We compare to sev-
eral self-supervised approaches and an unsupervised approach,
i.e., BIGAN (Donahue et al., 2016). 'Noroozi & Favaro (2016) 350 /785



Relation to classification with generative models (1/3)

Assume that we have a generative probabilistic model Py to model
random variables (X, Y) where Y is a label in {1,...,p}.

Assume that the marginals Py(Y = k) = 7, are among the model
parameters 6, which we can also parametrize as
ek

i/:]_ eak/ .

Po(Y = k) =m =
The classification of a new point x can be obtained via Bayes’ rule:

y(x) = argmax Py(Y = k|x),
k=1,....p

where Py(Y = k|x) is short for Py(Y = k|X = x) and
Po(Y = k|x) = Py(x|Y = k)Py(Y = k)/Py(x)

p
= Py(x|Y = K)mi/ D Po(x|Y = K)ma
k'=1
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Relation to classification with generative models (2/3)

Then, consider the Fisher score

Vi log Py(x) = PBI(X)WPe(X)
1 P
= 50 Vo kz_:l Py(x,Y = k)
P
= Pgl(x) Z Po(x,Y = k)Vglog Py(x, Y = k)

In particular (exercise)

0 log Py(x)

= Py(Y = k|x) — 7.
Oy
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Relation to classification with generative models (3/3)

The first p elements in the Fisher score are given by class posteriors
minus a constant

wo(x) = [Po(Y = 1|x) = m1,..., Po(Y = p|x) — mp, ...].

Consider a multi-class linear classifier on ¢y(x) such that for class k
@ The weights are zero except one for the k-th position;
@ The intercept by be my;
Then,
9(x) = argmax @g(x) " wy + by
k=1,...,p
y(x) = argmax Py(Y = k|x).

k=1,....p

Bayes' rule is implemented via this simple classifier using Fisher kernel.
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Outline

© The Kernel Jungle

o Kernels for probabilistic models

@ Mutual information kernels
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Mutual information kernels

Definition
@ Chose a prior w(df) on the measurable set ©.
o Form the kernel (Seeger, 2002):

K (x,x') = /Hee Py(x)Py(x")w(dB) .

o No explicit computation of a finite-dimensional feature vector.

o K (X,X,) =< (X) ) @(x/) >L2(W) with

v (%) = (Po (X)geo -
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Example: coin toss
o Let Pp(X =1) =6 and Py(X =0) =1— 6 a model for random coin
toss, with 6 € [0, 1].
o Let df be the Lebesgue measure on [0, 1]

@ The mutual information kernel between x = 001 and x’ = 1010 is:

Py(x) =60(1—0)7°,
Py(X) =62(1—0),

1 141 1
K(X,X/>/093(1—9)4d938|280
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Outline

© The Kernel Jungle

o Kernels for probabilistic models

@ Marginalized kernels
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Marginalized kernels

Definition
@ For any observed data x € X, let a latent variable y € ) be
associated probabilistically through a conditional probability Py (dy).
o Let Kz be a kernel for the complete data z = (x,y)

@ Then, the following kernel is a valid kernel on X, called a
marginalized kernel (Tsuda et al., 2002):

K (%,X') = Ep,(dy)x P, (ay) Kz (2,7)

— [ [ Kz (). (¢.5) Plly) P (a)
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Marginalized kernels: proof of positive definiteness

@ Kz is p.d. on Z. Therefore, there exists a Hilbert space H and
®z : Z — H such that:

Kz (2,2) = (¢z(2), 0z (2)),, -
o Marginalizing therefore gives:

Ky (x,x') = Ep,(dy)x P, (dy)Kz (z,7)
= Ep,(dy)xPy(dy) (P2 (2) . @z (),
= <EPX(dy)¢Z (Z) ) EPX/(dy’)q)Z (Z,) >7—[ y

therefore Ky is p.d. on X. [
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Marginalized kernels: proof of positive definiteness

@ Kz is p.d. on Z. Therefore, there exists a Hilbert space H and
®z : Z — H such that:

Kz (2,2) = (¢z(2), 0z (2)),, -
o Marginalizing therefore gives:

Kx (x,X') = Ep,(dy)xp, (ay)Kz (2,2
= Ep,(dy)xPy(dy) (P2 (2) . @z (),
= <EPX(dy)¢Z (Z) ) EPX/(dy’)(DZ (Z,) >7_[ y

therefore Ky is p.d. on X. [J

Of course, we make the right assumptions such that each operation
above is valid, and all quantities are well defined.

359 /785
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© Kernel tricks

© Kernel Methods: Supervised Learning
@ Kernel Methods: Unsupervised Learning

© The Kernel Jungle

o Kernels for biological sequences

@ Characterizing probabilities with kernels
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Outline

© The Kernel Jungle

@ Kernels for biological sequences
@ Motivations and history of genomics
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Short history of genomics

1866 :
1909 :
1944 .
1953 :

1966 :

1977 :
1982 :
1990 :
2003 :

Laws of heredity (Mendel)
Morgan and the drosophilists
DNA supports heredity (Avery)
Structure of DNA (Crick, Watson,

Wilkins and Franklin)

Genetic code (Nirenberg)

1960-70 : Genetic engineering

Method for sequencing (Sanger)
Creation of Genbank

Human genome project launched
Human genome project completed
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A cell

microtubules chromatin

mitechondrion nuclear pore
nucleolus

centriole .
Golgi complex

lysosome

plasma membrane

rough " | N smooth
endoplasmic endoplasmic
reticulum ribosomes reticulum

nuclear envelope | .00
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Chromosomes

HUMAN CHROMOSOMES

b)

XXX XK XS AR
TERT | KRR WL KK An

10 1

xh % XX 37\ XX Ah

17 18

XX XA XX xx Bz

19 20 21 22 xBy

(3]
Telomere
Chromatid 364 /785



Chromosomes and DNA
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Structure of DNA

“We wish to suggest a
structure for the salt of
desoxyribose nucleic acid
(D.N.A.). This structure have
novel features which are of
considerable biological
interest” (Watson and Crick,
1953).

James Watson, Francis Crick, and Maurice Wilkins received the Nobel
prize for this discovery in 1962. Key to this discovery were the X-ray
crystallography images obtained by Rosalind Franklin.
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Structure of DNA
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The double helix
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Central dogma

DNA
mHSdA Transcription )

-Mm;@m

Proteins
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Proteins

Amino Acid
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Genetic code

DNA = 4 letters (ATCG)

‘:ébtﬁ/m RNA =4 Lim (AUCG)
|

A
U C A anticodon AUG
5 A G U codon UAC mRNA 3
2nd base in codon
Lene. Protein letters (amino acids)
Phe | Ser | T,
H u Lea | ser | stor|stop | A S
8 Leu | Ser | STOP | Tp G g
° Leu [ Pro [ His | Ag | U K
£ C | lew|Pro | His | Ag | C 5
F Leu [Pro | Gln | Ag | A | &
8 Leu |Pro | GIn | Ag | G g
3 e[ The [ Ren [ "Ser g S . .
< Al e | e Ser
Met | The | Lys Arg G am] 0 Cl
Val | Ala [ Asp | Gly U
G|V | M| |Gy | C
Val | Ala | Glu | Gly A —
val | Ma |Gl |Gy | G p—

3 nucleotides
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Human genome project

@ Goal : sequence the 3,000,000,000 bases of the human genome
o Consortium with 20 labs, 6 countries
@ Cost : between 0.5 and 1 billion USD
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2003: End of genomics era

THESS.. _
HUMAN ¢
GENOMI 4

e\

Findings
@ About 25,000 genes only (representing 1.2% of the genome).
@ Automatic gene finding with graphical models.
@ 97% of the genome is considered “junk DNA".
@ Superposition of a variety of signals (many to be discovered).
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Cost of human genome sequencing

Moore's Law

National Human Genome
Research Institute

genome.gov/sequencingcosts

S1K - T T

20012002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
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Protein sequence

Primary protain structure
= eeguance of a chain of aming acds

Amino Acid

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Methionine
E : Glutamic acid K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine
H : Histidine Y : Tyrosine W : Tryptophane
| : Isoleucine S : Serine Q : Glutamine

D : Aspartic acid G : Glycine
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Challenges with protein sequences

@ A protein sequences can be seen as a variable-length sequence over
the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

@ These sequences are produced at a fast rate (result of the
sequencing programs)

@ Need for algorithms to compare, classify, analyze these sequences

@ Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...
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Example: supervised sequence classification

Data (training)

@ Secreted proteins:

MASKATLLLAFTLLFATCTARHQQRQQQQNQCQLQNIEA. ..

MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .

MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. ..

@ Non-secreted proteins:

MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. ..

MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Goal

@ Build a classifier to predict whether new proteins are secreted or not.
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Supervised classification with vector embedding

The idea
@ Map each string x € X' to a vector ®(x) € F.

@ Train a classifier for vectors on the images ®(x1), ..., ®(x,) of the
training set (nearest neighbor, linear perceptron, logistic regression,

support vector machine...)
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Kernels for protein sequences

o Kernel methods have been widely investigated since Jaakkola et al.'s
seminal paper (1998).
@ What is a good kernel?

o it should be mathematically valid (symmetric, p.d. or c.p.d.)
e fast to compute
o adapted to the problem (gives good performances)
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Kernel engineering for protein sequences

@ Define a (possibly high-dimensional) feature space of interest

e Physico-chemical kernels
e Spectrum, mismatch, substring kernels
o Pairwise, motif kernels
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Kernel engineering for protein sequences

@ Define a (possibly high-dimensional) feature space of interest
e Physico-chemical kernels
e Spectrum, mismatch, substring kernels
o Pairwise, motif kernels
@ Derive a kernel from a generative model
o Fisher kernel
e Mutual information kernel
o Marginalized kernel
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Kernel engineering for protein sequences

@ Define a (possibly high-dimensional) feature space of interest

e Physico-chemical kernels
e Spectrum, mismatch, substring kernels
o Pairwise, motif kernels

@ Derive a kernel from a generative model

o Fisher kernel
o Mutual information kernel
o Marginalized kernel

@ Derive a kernel from a similarity measure
o Local alignment kernel
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Outline

© The Kernel Jungle

@ Kernels for biological sequences

@ Kernels derived from large feature spaces
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Vector embedding for strings

The idea

Represent each sequence x by a fixed-length numerical vector
® (x) € R". How to perform this embedding?
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Vector embedding for strings

The idea

Represent each sequence x by a fixed-length numerical vector
® (x) € R". How to perform this embedding?

Physico-chemical kernel
Extract relevant features, such as:
@ length of the sequence

@ time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

o Fourier transforms (Wang et al., 2004)
o Autocorrelation functions (Zhang et al., 2003)

1 <
- hihiyi
rJ n _J ; +J
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Substring indexation

The approach

Alternatively, index the feature space by fixed-length strings, i.e.,

® (x) = (Pu (X)) yeax

where @, (x) can be:

@ the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)

@ the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)
@ the number of occurrences of u in x allowing gaps, with a weight

decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Example: Spectrum kernel (1/4)

Kernel definition
@ The 3-spectrum of
x = CGGSLIAMMWFGV

(CGG,GGS,GSL,SLI,LIA,IAM, AMM,MMW , MWF ,WFG,FGV) .

o Let ®,(x) denote the number of occurrences of u in x. The
k-spectrum kernel is:

K (x,X') := Z ®, (x) Py (X) .

ue Ak
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Example: Spectrum kernel (2/4)

Implementation

o The computation of the kernel is formally a sum over |A[X terms
but at most | x| — k + 1 terms are non-zero in ¢ (x) —
Computation in O (|x |+ | x"|) with pre-indexation of the strings

e Fast classification of a sequence x in O (|x|):

| x|—k+1

f(x)=w-®(x)= z w, P, (x) = Z Wi Xisk_1+
u =1l

Remarks
e Work with any string (natural language, time series...)
@ Fast and scalable, a good default method for string classification

@ Variants allow matching of k-mers up to m mismatches.
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Example: Spectrum kernel (3/4)

If pre-indexation is not possible: retrieval tree (trie)
Consider the sequence ACGTTTAACGTAC.
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Example: Spectrum kernel (4/4)

If pre-indexation is not possible: use a suffix tree

NA$

Gl O [ [

The complexity for computing K(x,x") becomes O(|x| + |x/|), but with a
larger constant than with pre-indexation.
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Example 2: Substring kernel (1/12)

Definition
@ For 1 < k < neN, we denote by Z(k, n) the set of sequences of
indices i = (i1, ...,0k), with 1 <jj < <...<ix <n.

@ For a string x = x1 ... x, € X of length n, for a sequence of indices
i € Z(k, n), we define a substring as:

XENED Y

@ The length of the substring is:

/(I):Ik—ll—l-l
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Example 2: Substring kernel (2/12)

Example

ABRACADABRA

°i=(34,7,8,10)
o x (i) =RADAR
0 I(()=10-3+1=38
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Example 2: Substring kernel (3/12)

The kernel

o Let k e Nand A\ € R" fixed. For allu € A¥, let &, : X — R be
defined by:

VX EX, ®y(x)= 3 NCS
i€Z(k,|x]):  x(i)=u

@ The substring kernel is the p.d. kernel defined by:

V(x,x’)€X2, Kix (x,x') ZCD

uc Ak
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Example 2: Substring kernel (4/12)

Example
u ‘ ca ct at ba bt c ar br
Pycat) [A2 X3 X2 0 0 0O 0 O
Pycar) (X2 0 0 0 0 X XN 0
dybat) [ 0 0 A2 X2 X 0 0 O
Pybar) | 0 0 0 X2 0 0 A A

(cat,cat) = K (car,car) = 2\* 4 \6
(cat,car) = \*
(cat,bar) =0

X X X
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Example 2: Substring kernel (5/12)

Kernel computation

@ We need to compute, for any pair x,x’ € X, the kernel:

Kk)\XX Z(D

uc Ak

-X 2y o,

uc Ak ix(i)=u i =u

o Enumerating the substrings is too slow (of order |x |¥).
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Example 2: Substring kernel (6/12)

Kernel computation (cont.)

o For u € A¥ remember that:

q)u (X) _ Z )\ik—il-l-l .

ix(i)=u

o Let now:

W, (x) = Z =R

ixx(i)=u
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Example 2: Substring kernel (7/12)

Kernel computation (cont.)

Let us note x[; jj = x1...X;. A simple rewriting shows that, if we note
a € A the last letter of u (u = va):

Dy, (X) = Z v, (X[l,j—l]) )‘a

JE[L|x[]:x=a
and

Vo (x) = > Wy (xpyog) A
JE[L,|x|]:xj=a
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Example 2: Substring kernel (8/12)

Kernel computation (cont.)

Moreover we observe that if the string is of the form xa (i.e., the last
letter is a € A), then:

o If the last letter of u is not a:

b, (xa) =Py (x),
Y, (xa) = AV, (x).

o If the last letter of u is a (i.e., u = va with v € A 1):

by, (xa) = Dya(x) + AV (x)
Vya(xa) = AWy, (x) + AV, (x) .
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Example 2: Substring kernel (9/12)

Kernel computation (cont.)

Let us now show how the function:

kax E= Z\U

uc Ak
and the kernel:

uc Ak

can be computed recursively. We note that:

By (x,x') = Ko (x,x') =1 for all x,x’
Bk (x,x') = Kk (x,x') =0 if min(|x]|,[x]) < k
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Example 2: Substring kernel (10/12)

Recursive computation of By

By (xa,x’)

— Z W, (xa) Wy (x')

ue Ak
=2 W)U (X)+ A D W (x) W, (X)
uc Ak veAk—1
= ABy (x,x') +

A Z Yy (X)( Z v, (x’[1J_1]> >\x’j+1>

veAk-1 JelL [ [l:x/=a

= ABj (x,x) + Z Br-1 (X’XEIJ—I]) B =T

H ! ! —
JElL | [l:x/=a
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Example 2: Substring kernel (11/12)

Recursive computation of By

B (xa,x'b)
= ABx (Xaxlb) + A Z Bk-1 (X,Xil,j—l]) A *[=i+2

JelL X lxi=a
+ S2mbBr1(x,X')N\?
= ABy (x,X'b) + A(Bk(xa,x') — ABi(x, X)) + da=pBr—1(x, X )\?
= ABx (x,X'b) + ABy(xa,x') — N Bi(x,X') 4+ 8a=pBr_1(x, X')N\°.

The dynamic programming table can be filled in O(k|x||x|) operations.
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Example 2: Substring kernel (12/12)

Recursive computation of K

Ki (xa, x')

— Z Py (xa) Dy (x')

uc Ak

= Y PP (X) FA D Wy (x) bug (X)
uc Ak veAk-1
= K (x, x') +

Ay \Uv(x)< > v (%) ,\)

veAk-1 j

JelL|x l:xj=a
= Kk (X, X/) + )\2 Z Bk_]_ <X,Xi17j_1]>

H ! —
JelL|x [l:x=a
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Summary: Substring indexation

o Implementation in O(|x| + [x|) in memory and time for the
spectrum and mismatch kernels (with suffix trees)

@ Implementation in O(k(|x| + |x'|)) in memory and time for the
spectrum and mismatch kernels (with tries)

e Implementation in O(k|x| x |x'|) in memory and time for the
substring kernels

o The feature space has high dimension (].A|), so learning requires
regularized methods (such as SVM)
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Dictionary-based indexation

The approach

@ Chose a dictionary of sequences D = (x1, X, .. .

@ Chose a measure of similarity s (x, x’)

o Define the mapping ®p (x) = (s (X7Xf))x,-€D

7xn)
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Dictionary-based indexation

The approach
@ Chose a dictionary of sequences D = (x1,X2, ..., Xp)
@ Chose a measure of similarity s (x, x’)

o Define the mapping ®p (x) = (s (X,Xi)),.cp

Examples
This includes:
@ Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function

@ Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between

sequences.
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Outline

© The Kernel Jungle

@ Kernels for biological sequences

@ Kernels derived from generative models
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Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel
designs. Important models include HMM for protein sequences, SCFG for
RNA sequences.

Recall: parametric model
A model is a family of distributions

{Pg,0 € ® CR™} C M (X)
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Context-tree model

Definition

A context-tree model is a variable-memory Markov chain:

Pp.o(x) = Pp,g (x H Pp.o (xi | Xi—p - . . Xi—1)
i=D+1

@ D is a suffix tree

o 0 € P is a set of conditional probabilities (multinomials)
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Context-tree model: example

P(AABACBACC) = P(AAB)0ag(A)0a(C)0c(B)0acs(A)0a(C)oc(A) .
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The context-tree kernel

Theorem (Cuturi et al., 2005)

o For particular choices of priors, the context-tree kernel:
Kxx) =3 [ Poal)Poo(x)w(@blD)n(D)
p JOex

can be computed in O(|x| + [x/|

) with a variant of the Context-Tree
Weighting algorithm.

@ This is a valid mutual information kernel.

@ The similarity is related to information-theoretical measure of
mutual information between strings.
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Marginalized kernels

Recall: Definition

@ For any observed data x € X, let a latent variable y € ) be
associated probabilistically through a conditional probability Py (dy).

o Let Kz be a kernel for the complete data z = (x,y)

@ Then the following kernel is a valid kernel on X, called a
marginalized kernel (Tsuda et al., 2002):

K (x,X') = Ep,(ay)x P, (ay) Kz (2,7)

— [ [ Kz (). (¢.5) Plly) P (a)
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Example: HMM for normal/biased coin toss

0.85
0.05
05
o1 @ e Normal (N) and biased (B)
0.1 coins (not observed)
0.5 ‘3) 0.05
Q&J'ID

@ Observed output are 0/1 with probabilities:

7(0|N) = 1 — 7(1|N) = 0.5,
7(0|B) =1 — n(1|B) = 0.2.

e Example of realization (complete data):

NNNNNBBBBBBBBBNNNNNNNNNNNBBBBBB
1001011101111010010111001111011
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1-spectrum kernel on complete data

o If both x € A* and y € §* were observed, we might rather use the
1-spectrum kernel on the complete data z = (x,y):

Kz (Z, Z,) = Z Ny s (z) Ny s (Z/) )

(a,s)eAxS

where n, s (x,y) for a=0,1 and s = N, B is the number of
occurrences of s in y which emit a in x.

e Example:

z=1001011101111010010111001111011,
Z/ =0011010110011111011010111101100101,

Kz (z,2) = m(2) m (Z') + m (z) m (2') + no (2) no (Z') + no (z) no (2)
=7x154+13x6+9x124+2x1=293.
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1-spectrum marginalized kernel on observed data

@ The marginalized kernel for observed data is:

Ky (x,x) = Y Kz ((xy),(x,y))P(yx)P(yIx)

Y,y €ES*

Y 00 (4).

(a,5)€eAXS

with

Gas(x) = D P(yIX)nas (x,y)

yeS*
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Computation of the 1-spectrum marginalized kernel

as X) j{: P y’x nas X Y)

yeES*
=Y Pyl {Za Xisa y,,s)}
yeS*
S x,,a>{zp 550 }
yeS*

= 6(,0) Py = she).
i=1

and P (y; = s|x) can be computed efficiently by forward-backward
algorithm!
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HMM example (DNA)

Gene on
forward strand

Gene on
reverse strand
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HMM example (protein)




SCFG for RNA sequences

SFCG rules
S—SS
S — aSa
S—as
S—a

&4
; ‘cA;.f\:“_E"'c.A“\
e | g

Marginalized kernel (Kin et al., 2002)

o Feature: number of occurrences of each (base,state) combination

e Marginalization using classical inside/outside algorithm
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Marginalized kernels in practice

Examples

@ Spectrum kernel on the hidden states of a HMM for protein
sequences (Tsuda et al., 2002)

o Kernels for RNA sequences based on SCFG (Kin et al., 2002)

o Kernels for graphs based on random walks on graphs (Kashima et
al., 2004)

o Kernels for multiple alignments based on phylogenetic models (Vert
et al., 2006)
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Marginalized kernels: example

PC2 A set of 74 human tRNA

sequences is analyzed using a
%ﬂf kernel for sequences (the

" second-order marginalized

°oe kernel based on SCFG). This

- O PCl set of tRNAs contains three

oo classes, called Ala-AGC (white

8§8é8® circles), Asn-GTT (black

circles) and Cys-GCA (plus

o symbols) (from Tsuda et al.,

2002).
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Outline

© The Kernel Jungle

@ Kernels for biological sequences

@ Kernels derived from a similarity measure
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Sequence alignment

Motivation

How to compare 2 sequences?

X1 = CGGSLIAMMWFGV
X2 = CLIVMMNRLMWEGV

Find a good alignment:

CGGSLIAMM------ WEGV

oo o FII D o oo BT
O LIVMMNRLMWFGV
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Alignment score

In order to quantify the relevance of an alignment 7, define:
@ a substitution matrix S € RA*A
@ a gap penalty function g : N — R

Any alignment is then scored as follows

CGGSLIAMM------ WEFGV

loee TN oo o I
C----LIVMMNRLMWFGV

ss.¢(m) = S(C,C) + S(L, L)+ S(I,1) + S(A, V) + 25(M, M)
+S(W, W)+ S(F,F)+ S(G,G)+ S(V,V)—g(3) — g(4)
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Local alignment kernel

Smith-Waterman score (Smith and Waterman, 1981)

@ The widely-used Smith-Waterman local alignment score is defined
by:

SWs ¢(x,y) == e ss.g ().

@ It is symmetric, but not positive definite...
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Local alignment kernel

Smith-Waterman score (Smith and Waterman, 1981)

@ The widely-used Smith-Waterman local alignment score is defined
by:

SWs g(x,y) = 3 ss.g(™).

@ It is symmetric, but not positive definite...

LA kernel (Saigo et al., 2004)

The local alignment kernel:

KO (xy)= 3 exp(Bssg(xy.m),
wen(x,y)

is symmetric positive definite.
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LA kernel is p.d.: proof (1/11)

Lemma
o If K1 and K5 are p.d. kernels, then:

K1 + Ko,
Kle, and
cKi, for ¢ > 0,

are also p.d. kernels

o If (Ki);~; is a sequence of p.d. kernels that converges pointwisely to
a function K:

! 2 AN . /
V(X,X)EX, K(x,x)—nllﬁmOOK,(x,x)7

then K is also a p.d. kernel.
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LA kernel is p.d.: proof (2/11)

Proof of lemma
Let A and B be n x n positive semidefinite matrices. By diagonalization

of A: .
Aij =Y ()3
p=1

for some vectors f1,...,f,. Then, for any a € R":
n
> ajajAiiB Z Z aify( j)Bij > 0.
ij=1 p=1ij=1

The matrix C;j = A; ;B is therefore p.d. Other properties are obvious
from definition. [J
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LA kernel is p.d.: proof (3/11)

Lemma (direct sum and product of kernels)

Let X = A1 X X,. Let Ky be a p.d. kernel on X3, and K, be a p.d.

kernel on &>. Then the following functions are p.d. kernels on X

@ the direct sum,

K ((x1,%2), (y1,¥2)) = K1 (x1,¥1) + K2 (x2,¥2) ,

@ The direct product:

K ((x1,%2), (y1,¥2)) = K1 (x1,¥1) K2 (x2,y2) -
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LA kernel is p.d.: proof (4/11)

Proof of lemma
If K1 is a p.d. kernel, let ®; : X1 — H be such that:

K1 (x1,y1) = (P1(x1), P1(y1))y -
Let ®: A7 x Xy — H be defined by:
® ((x1,%2)) = P1 (x1) -
Then for x = (x1,x2) and y = (y1,y2) € X, we get
(@ ((x1,%2)), @ ((y1,¥2)))3 = K (x1,%2),

which shows that K (x,y) := Ki (x1,y1) is p.d. on X1 X X>. The lemma
follows from the properties of sums and products of p.d. kernels. [
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LA kernel is p.d.: proof (5/11)

Lemma: kernel for sets

Let K be a p.d. kernel on X, and let P (X') be the set of finite subsets of
X. Then the function Kp on P (X) x P (X) defined by:

VA,BEP(X), Kp(AB):=> > K(xy)

xcAyeB

is a p.d. kernel on P (X).
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LA kernel is p.d.: proof (6/11)

Proof of lemma
Let @ : X — H be such that

K(x,y) = (®(x), P (y) -

Then, for A, B € P (X), we get:

Kp(A,B) =) > ((x),P(y))y

xcAyeB
- <z¢<x>,z¢m>
xEA yeB X

= (Pp(A),Pp(B))y

with ®p(A) =3, ,®(x). O
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LA kernel is p.d.: proof (7/11)

Definition: Convolution kernel (Haussler, 1999)

Let K1 and K> be two p.d. kernels for strings. The convolution of K;
and K3, denoted Kj x K>, is defined for any x,x’ € X by:

Kix Ka(x,y) = Z Ki(x1,y1)Ko(x2,¥2).

X1X2=X,y1¥Y2=Y

Lemma
If K1 and Ky are p.d. then Ky x Ko is p.d..
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LA kernel is p.d.: proof (8/11)

Proof of lemma
Let X be the set of finite-length strings. For x € X, let

R(x) ={(x1,%2) € ¥ x X 1 x=x1x2} C X x X.
We can then write

Ky x Ka(x,y) = Z Z Ki(x1,y1)Ka(x2, y2)

(x1,%2)ER(x) (y1,¥2)ER(Y)

which is a p.d. kernel by the previous lemmas. [
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LA kernel is p.d.: proof (9/11)

3 basic string kernels

@ The constant kernel:
KO (X, Y) =1.

@ A kernel for letters:

0 if |x|#1where |y|#1,

(8) —
Ka™ (x,y) .—{ exp (BS(x,y)) otherwise.

o A kernel for gaps:

K (x,y) = expB(g(Ix]) + & (Iy )] -
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LA kernel is p.d.: proof (10/11)

Remark
o S: A% — R is the similarity function between letters used in the
alignment score. Ka(ﬁ) is only p.d. when the matrix:

(exp (Bs(a, b)))(a,b)eA2

is positive semidefinite (this is true for all 5 when s is conditionally
p.d..

@ g is the gap penalty function used in alignment score. The gap
kernel is always p.d. (with no restriction on g) because it can be
written as:

K (x,y) = exp (Bg (| x])) x exp (Bg (¥ ])) -
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LA kernel is p.d.: proof (11/11)

Lemma
The local alignment kernel is a (limit) of convolution kernel:

& (n-1)
KD = Kox (K% k)" 5 k) x ko,
n=0

As such it is p.d..

Proof (sketch)
@ By induction on n (simple but long to write).
@ See details in Vert et al. (2004).
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LA kernel computation

@ We assume an affine gap penalty:

g(0) =0,
g(n) =d+e(n—1)sin>1,
@ The LA kernel can then be computed by dynamic programming by:
K0 y) = 1+ Xe(lx], Iy]) + Ya(lxl, lyl) + M(x] ),

where M(i. ), X(i.j), Y (i), Xa((i. ), and Ya(i.j) for 0 < i < |x],
and 0 < j < |y| are defined recursively.
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LA kernel is p.d.: proof (/)

[nitialization

M(i,0) = M(0,/) = 0,
X(i,0) = X(0,/) =0,
Y(i,0) = Y(0,j) =0,
Xa(i,0) = X2(0,/) =0,

| Y2(1,0) = ¥5(0,)) =0,
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LA kernel is p.d.: proof (/)

Recursion

Fori=1,...,|x|andj=1,...|y|:

,

M(iJ) = exp(BS(xi, ) [1+X(i =1, 1)
+Y(i—-1,j-1)+M(i—-1,j-1)|,

X(ir) = exp(Bd)M(i — 1,5) + exp(Be)X (i — 1.))

Y(iJ) = exp(Bd)[M(i,j — 1)+ X(i.j = 1)
+exp(Be) Y (i, — 1),

Xao(irj) = M(i—1,j)+ Xe(i = 1,j),

Valini) = M(irj = 1)+ Xa(irj — 1) + Ya(irj — 1).
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LA kernel in practice

@ Implementation by a finite-state transducer in O(|x| x |x/|)
0:0/1

@ In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)
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Outline

© The Kernel Jungle

@ Kernels for biological sequences

@ Application to remote homology detection
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Remote homology

Sequence similarity

@ Homologs have common ancestors
@ Structures and functions are more conserved than sequences

@ Remote homologs can not be detected by direct sequence
comparison
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SCOP database

SCOP
Fold

i T B
o s B 2853 TIo S

Renot e honol ogs  Cl ose honol ogs
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A benchmark experiment

@ Goal: recognize directly the superfamily

@ Training: for a sequence of interest, positive examples come from
the same superfamily, but different families. Negative from other
superfamilies.

@ Test: predict the superfamily.
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Difference in performance

v 1 1 1 1

SVM-LA —+—
SVM-pairwise ---x---
SVM-Mismatch ------
SVM-Fisher —&-— 7

50

40 %

30

20

No. of families with given performance

10

0 0.2 0.4 0.6 0.8
ROC50

Performance on the SCOP superfamily recognition benchmark (from
Saigo et al., 2004).
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String kernels: Summary

@ A variety of principles for string kernel design have been proposed.

@ Good kernel design is important for each data and each task.
Performance is not the only criterion.

o Still an art, although principled ways have started to emerge.
@ Fast implementation with string algorithms is often possible.

@ Their application goes well beyond computational biology.
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Outline

© Kernels and RKHS

© Kernel tricks

© Kernel Methods: Supervised Learning
@ Kernel Methods: Unsupervised Learning

© The Kernel Jungle

o Kernels for graphs

@ Characterizing probabilities with kernels

442 / 785



Outline

© The Kernel Jungle

o Kernels for graphs
@ Motivation
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Virtual screening for drug discovery

active

NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Image retrieval and classification

From Harchaoui and Bach (2007 ).
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Our approach
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Our approach

O Represent each graph x in X by a vector ®(x) € H, either explicitly
or implicitly through the kernel

K(x,x') = &(x) " d(x).
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Our approach

O Represent each graph x in X by a vector ®(x) € H, either explicitly
or implicitly through the kernel
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Outline

© The Kernel Jungle

o Kernels for graphs

@ Explicit enumeration of features
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The approach

© Represent explicitly each graph x by a vector of fixed dimension
d(x) € RP.
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The approach

© Represent explicitly each graph x by a vector of fixed dimension
d(x) € RP.

@ Use an algorithm for regression or pattern recognition in RP.
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Example

2D structural keys in chemoinformatics

@ Index a molecule by a binary fingerprint defined by a limited set of
predefined structures

AN A NN N

H//c’

IHHHHH [T

&“@/

@ Use a machine learning algorithm such as SVM, kNN, PLS, decision
tree, etc.
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Challenge: which descriptors (patterns)?

@ NN AN, N\ =N N

R

I\HHHHHIHHHI:!

@ Expressiveness: they should retain as much information as possible
from the graph

@ Computation: they should be fast to compute

@ Large dimension of the vector representation: memory storage,
speed, statistical issues
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Indexing by substructures

QA AL A, e
RETATT 7

| ENENEEEENNEN EEEEEEE N

@ Often we believe that the presence or absence of particular
substructures may be important predictive patterns

@ Hence it makes sense to represent a graph by features that indicate
the presence (or the number of occurrences) of these substructures

@ However, detecting the presence of particular substructures may be
computationally challenging...
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Subgraphs

Definition
A subgraph of a graph (V, E) is a graph (V’/, E') with V/ C V and

] 22392
Lo e ode Lo
S Foedlls

A graph and all its connected subgraphs.
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Indexing by all subgraphs?
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Indexing by all subgraphs?

Theorem
Computing all subgraph occurrences is NP-hard.
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Indexing by all subgraphs?

Theorem
Computing all subgraph occurrences is NP-hard.

Proof

@ The linear graph of size n is a subgraph of a graph X with n vertices
iff X has a Hamiltonian path;

@ The decision problem whether a graph has a Hamiltonian path is
NP-complete.
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Paths

Definition
@ A path of a graph (V, E) is a sequence of distinct vertices
Vi,...,Vp € V (i #j = vj # vj) such that (vj, vi41) € E for
i=1,....n—1.

e Equivalently the paths are the linear subgraphs.
: | NONON
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Indexing by all paths?

®—®
‘ ® (0,...,0,1,0,...,0,1,0,...)
E—® t
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Indexing by all paths?

@‘@ ® (0,...,0,1,0,...,0,1,0,...)
BF—® ¢ ¢
(a—a] (o—e—a)

Theorem
Computing all path occurrences is NP-hard.
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Indexing by all paths?

®&—B
‘ s (0 -..,0,1,0,...,0,1,0,...)
E—3

[@—'®] []

Theorem

Computing all path occurrences is NP-hard.

Proof
Same as for subgraphs.
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Indexing by what?

Substructure selection

We can imagine more limited sets of substructures that lead to more
computationnally efficient indexing (non-exhaustive list)

@ substructures selected by domain knowledge (MDL fingerprint)
@ all paths up to length k (Openeye fingerprint, Nicholls 2005)
@ all shortest path lengths (Borgwardt and Kriegel, 2005)

o all subgraphs up to k vertices (graphlet kernel, Shervashidze et al.,
2009)

e all frequent subgraphs in the database (Helma et al., 2004)
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Example: Indexing by all shortest path lengths and their
endpoint labels
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Example: Indexing by all shortest path lengths and their
endpoint labels

(0,...,0,2,0,...,0,1,0,...)
EB—®

Properties (Borgwardt and Kriegel, 2005)
o There are O(n?) shortest paths.

@ The vector of counts can be computed in O(n3) with the
Floyd-Warshall algorithm.
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Example: Indexing by all subgraphs up to k vertices

OO
(®(0,...,0,1,0,...,0,1,0,...)

®
40
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Example: Indexing by all subgraphs up to k vertices

@»
(®(0,...,0,1,0,...,0,1,0,...)

e’g

Properties (Shervashidze et al., 2009)

o Naive enumeration scales as O(n*).

o Enumeration of connected graphlets in O(nd“~1) for graphs with
degree < d and k <5.

o Randomly sample subgraphs if enumeration is infeasible.
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Summary

@ Explicit computation of substructure occurrences can be
computationnally prohibitive (subgraphs, paths);

@ Several ideas to reduce the set of substructures considered:;

@ In practice, NP-hardness may not be so prohibitive (e.g., graphs
with small degrees), the strategy followed should depend on the
data considered.

459

785



Outline

© The Kernel Jungle

o Kernels for graphs

@ Challenges
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The idea
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The idea

@ Represent implicitly each graph x in X by a vector ®(x) € H
through the kernel

K(x,x') = &(x) " d(x).

461 /785



The idea

@ Represent implicitly each graph x in X by a vector ®(x) € H
through the kernel

K(x,x') = &(x) " d(x).

@ Use a kernel method for classification in H.
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Expressiveness vs Complexity

Definition: Complete graph kernels
A graph kernel is complete if it distinguishes non-isomorphic graphs, i.e.:

VGl,GQGX, dK(Gl,Gz):O — G12G2.

Equivalently, ®(G;1) # ®(G,) if G and Gy are not isomorphic.
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Expressiveness vs Complexity

Definition: Complete graph kernels
A graph kernel is complete if it distinguishes non-isomorphic graphs, i.e.:

VGl,GQGX, dK(Gl,GQ):O — GlﬁGg.

Equivalently, ®(G;1) # ®(G,) if G and Gy are not isomorphic.

Expressiveness vs Complexity trade-off

o If a graph kernel is not complete, then there is no hope to learn all
possible functions over X: the kernel is not expressive enough.

@ On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical applications.

@ Can we define tractable and expressive graph kernels?
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Complexity of complete kernels

Proposition (Gartner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.
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Complexity of complete kernels

Proposition (Gartner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

Proof

@ For any kernel K the complexity of computing dk is the same as the
complexity of computing K, because:

dK(Gl, G2)2 = K(Gl, Gl) + K(GQ, G2) = 2K(G1, G2) .

o If K is a complete graph kernel, then computing dk solves the graph
isomorphism problem (dk(Gi, G2) =0 iff Gi ~ Gp). O
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Subgraph kernel

Definition
o Let (Ag)scr be a set or nonnegative real-valued weights

o For any graph G € X and any connected graph H € X, let

®4(G) =|{G"is a subgraph of G : G' ~ H}| .

@ The subgraph kernel between any two graphs G; and Gy € X is
defined by:

Keubgraph(GL, G2) = Y Au®H(G1)On(Ga).

Hex
H connected
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Subgraph kernel complexity

Proposition (Gartner et al., 2003)
Computing the subgraph kernel is NP-hard.
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Subgraph kernel complexity

Proposition (Gartner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (1/2)
o Let P, be the path graph with n vertices.
@ Subgraphs of P, are path graphs:

®(P,) =nep, +(n—1)ep, + ...+ ep, .

@ The vectors ®(P1),...,P(Py) are linearly independent, therefore:
n
ep, = Z CM,‘(D(P,') 5
i=1
where the coefficients «; can be found in polynomial time (solving

an n X n triangular system).
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Subgraph kernel complexity

Proposition (Gartner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (2/2)
o If G is a graph with n vertices, then it has a path that visits each

node exactly once (Hamiltonian path) if and only if ®(G)Tep, > 0,
ie.,

n n
d)(G)T (Z CM,'(D(P,')) = ZaiKsubgraph(Gv PI) >0.
i=1 i=1

@ The decision problem whether a graph has a Hamiltonian path is
NP-complete. [J
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Path kernel

@‘@ ® (0,...,0,1,0,...,0,1,0,...)
BF—® $ $
(a—a] (o—e—a)

Definition

The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1, G2) = Y An®p(G)OH(G)
HeP

where P C X is the set of path graphs.
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Path kernel

@‘@ ® (0,...,0,1,0,...,0,1,0,...)
BF—® $ $
(a—a] (o—e—a)

Definition

The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1, G2) = Y An®p(G)OH(G)
HeP

where P C X is the set of path graphs.

Proposition (Gartner et al., 2003)
Computing the path kernel is NP-hard.
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Summary

Expressiveness vs Complexity trade-off
o It is intractable to compute complete graph kernels.
@ It is intractable to compute the subgraph kernels.

@ Restricting subgraphs to be linear does not help: it is also
intractable to compute the path kernel.

@ One approach to define polynomial time computable graph kernels is
to have the feature space be made up of graphs homomorphic to
subgraphs, e.g., to consider walks instead of paths.
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Outline

© The Kernel Jungle

o Kernels for graphs

@ Walk-based kernels
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Walks

Definition
o A walk of a graph (V, E) is sequence of vy, ..., vp € V such that
(vi,viz1) € Efori=1,..., n—1.
@ We note W,(G) the set of walks with n vertices of the graph G,
and W(G) the set of all walks.

<] 33392
Lodedodels

o o’ 60 fed"s e o do
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Walks # paths

471 /785



Walk kernel

Definition
o Let &, denote the set of all possible label sequences of walks of
length n (including vertex and edge labels), and S = Up>1S,.
@ For any graph X let a weight Ag(w) be associated to each walk
w € W(G).
o Let the feature vector ®(G) = (s(G)),.s be defined by:

o, (G) = Z Ag(w)1 (s is the label sequence of w) .
weW(G)
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Walk kernel

Definition
o Let &, denote the set of all possible label sequences of walks of
length n (including vertex and edge labels), and S = Up>1S,.
@ For any graph X let a weight Ag(w) be associated to each walk
w € W(G).
o Let the feature vector ®(G) = (s(G)),.s be defined by:

Z Ag(w)1 (s is the label sequence of w) .
weW(G)

o A walk kernel is a graph kernel defined by:

Kuaik(G1, Go) = ) &5(G1)®
seS
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Walk kernel examples

Examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
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Walk kernel examples

Examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

@ The random walk kernel is obtained with Ag(w) = Pg(w), where
P¢ is a Markov random walk on G. In that case we have:

K(Gi, Go) = P(label(W;) = label(W3)),

where W; and W, are two independent random walks on G; and
Gy, respectively (Kashima et al., 2003).
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Walk kernel examples

Examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

@ The random walk kernel is obtained with Ag(w) = Pg(w), where
P¢ is a Markov random walk on G. In that case we have:

K(Gi, Go) = P(label(W;) = label(W3)),

where W; and W, are two independent random walks on G; and
Gy, respectively (Kashima et al., 2003).

@ The geometric walk kernel is obtained (when it converges) with
Ag(w) = pleneth(w) for B> 0. In that case the feature space is of
infinite dimension (Gartner et al., 2003).
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Computation of walk kernels

Proposition

These three kernels (nth-order, random and geometric walk kernels) can
be computed efficiently in polynomial time.
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Product graph

Definition
Let G = (V4, E1) and Gy = (Va, Ep) be two graphs with labeled vertices.
The product graph G = G; x Gy is the graph G = (V, E) with:

Q@ V ={(vi,»n) € Vi x Vo : vy and v, have the same label} ,
Q@ E={((vi,v2),(vj,})) e VxV : (v1,v{) € E1 and (w2, }) € Ex}.

1 a b 1b 2a 1d
o—0O O
2 c 3c 3e
la 2b : 2d :
3 4 d e
4c 4e
Gl (€74 Gl x &
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Walk kernel and product graph

Lemma
There is a bijection between:

@ The pairs of walks wg € W,(G1) and wy € W,(Gy) with the same
label sequences,

@ The walks on the product graph w € W,(G; x G).
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Walk kernel and product graph

Lemma
There is a bijection between:

@ The pairs of walks wg € W,(G1) and wy € W,(Gy) with the same
label sequences,

@ The walks on the product graph w € W,(G; x G).

Corollary

Kuaik(G1, G2) = Y 05(G1)0s(Gy)
seS

= > A (W)X, (Wa)L(I(w) = I(w2))

(w1,w2)EW(G1)XW(Gy)

= Z )‘G1><G2(W)'

WGW(Gl X G2)
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Computation of the nth-order walk kernel

@ For the nth-order walk kernel we have A\g, «,(w) = 1 if the length
of w is n, 0 otherwise.

@ Therefore:

Knth-order (Gla G2) = Z 1.
WEWR(G1X Gp)

@ Let A be the adjacency matrix of G; x G,. Then we get:

Knth—order Gl, G2 Z [An],d ].TAn

e Computation in O(n|V4||V2|did), where d; is the maximum degree
of G,'.
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Computation of random and geometric walk kernels

@ In both cases Ag(w) for a walk w = vy ... v, can be decomposed as:

Ag(vi...vp) = )\i(vl)HAt(v;_l, V).

@ Let A; be the vector of A'(v) and A; be the matrix of Af(v,V/):

n
Kuwaik(G1, G2) Z Z )\i(Vl)H/\t(Vi—la vi)

n=1 WGWn(G:[XGz) i=2
= Z AN
=0

i(l=NA)t

o Computation in O(|V1|3|V2[3).
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Extensions 1: Label enrichment

Atom relabeling with the Morgan index (Mahé et al., 2004)

1 2 4
1 1 2 2 4 5
q q
1 o1l 2 o1l 4 o3
1 2 5
No Morgan Indices O1 Order 1indices O1 Order 2 indices 03

@ Compromise between fingerprints and structural keys.
@ Other relabeling schemes are possible.

@ Faster computation with more labels (less matches implies a smaller
product graph).

479 /785



Extension 2: Non-tottering walk kernel

Tottering walks

A tottering walk is a walk w = vy ... v, with v; = v; 5 for some /.

'—Q—‘ Non-tottering

o O—0@ @
@ (@ rTottering

o Tottering walks seem irrelevant for many applications.

@ Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).
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Computation of the non-tottering walk kernel (Mahé et al.,
2005)

@ Second-order Markov random walk to prevent tottering walks
@ Written as a first-order Markov random walk on an augmented graph

@ Normal walk kernel on the augmented graph (which is always a
directed graph).

POoum ol
O

Va
H—C — "@ .H
L
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Extension 3: Subtree kernels

(ON N N NG

P Ty
IR

33 siegeinet

Remark: Here and in subsequent slides by subtree we mean a tree-like

pattern with potentially repeated nodes and edges.
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Example: Tree-like fragments of molecules

N/ R

N— N—C—C—C
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Computation of the subtree kernel (Ramon and Gartner,
2003; Mahé and Vert, 2009)

o Like the walk kernel, amounts to computing the (weighted) number
of subtrees in the product graph.

@ Recursion: if T(v, n) denotes the weighted number of subtrees of
depth n rooted at the vertex v, then:

T(v,n+1) Z H/\ v, V) ,n),

RCN(v) V'ER

where NV (v) is the set of neighbors of v.

@ Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.
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Back to label enrichment

Link between the Morgan index and subtrees

Recall the Morgan index:

No Morgan Indices  O1 Order 1 indices 01 Order 2 indices 03

The Morgan index of order k at a node v in fact corresponds to the
number of leaves in the k-th order full subtree pattern rooted at v.

A full subtree pattern of order 2 rooted at node 1.
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Label enrichment via the Weisfeiler-Lehman algorithm

A slightly more involved label enrichment strategy (Weisfeiler and
Lehman, 1968) is exploited in the definition and computation of the
Weisfeiler-Lehman subtree kernel (Shervashidze and Borgwardt, 2009).

. . . (e)—®)
@ Multiset-label determination ‘
and sorting

/

@

B o

Cbee> ad

Label compression \ bee

° P @"@ chde
d,aace

ad> bl

@ Relabeling 0&

@ 3
® &

g
Ry

@

@
® ©
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Label enrichment via the Weisfeiler-Lehman algorithm

A slightly more involved label enrichment strategy (Weisfeiler and
Lehman, 1968) is exploited in the definition and computation of the
Weisfeiler-Lehman subtree kernel (Shervashidze and Borgwardt, 2009).

. . . (e—®)
@ Multiset-label determination .
and sorting @ ©
@ @
Cebed>—Cbee D> ad — f
@ Label compression bee —— g
(daac® Cchd®>  cbde ——
daace — |
CGd> Cad> ebed ——

O

@ Relabeling 0‘
?-' ..

Compressed labels represent full subtree patterns.
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Weisfeiler-Lehman (WL) subtree kernel

(1)
) G)=(2,1,1,1,1,20,1,0,1,1,0,1)
Whsubiree abcdef hoi kK 1'm
Q) N
q)WLsubtree(G)_(1'%'1'(]'1':' 1?1]/ 1?1]/:1)
| ] 1 J
Counts of Counts of
original compressed
node labels node labels

Properties
@ The WL features up to the k-th order are computed in O(|E|k).

@ Similarly to the Morgan index, the WL relabeling can be exploited in
combination with any graph kernel (that takes into account
categorical node labels) to make it more expressive (Shervashidze et
al., 2011).
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o Kernels for graphs

@ Applications
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Application in chemoinformatics (Mahé et al., 2005)

MUTAG dataset
@ aromatic/hetero-aromatic compounds

@ high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.

@ 188 compounds: 125 + / 63 -

Results

10-fold cross-validation accuracy

Method ‘ Accuracy
Progoll 81.4%
2D kernel | 91.2%
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2D subtree vs walk kernels

Walks
Subtrees

D01VI6YSY
us
9228-INde
7-110W
2955
(81)09-1H
W30-30:

Screening of inhibitors for 60 cancer cell lines.
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Comparison of several graph feature extraction
methods/kernels (Shervashidze et al., 2011)

10-fold cross-validation accuracy on garph classification problems in
chemo- and bioinformatics:

@ NCI1 and NCI109 - active/inactive compounds in an anti-cancer screen

@ ENZYMES - 6 types of enzymes from the BRENDA database

‘ Method/Data Set H NCI1 H NCI109 H ENZYMES H
WL subtree || 82.10 (£ 0.18) || 82.46 (£0.24) || 52.22 (+1.26)
WL shortest path || 84.55 (£0.36) || 83.53 (£0.30) || 59.05 (£1.05)
Ramon & Gartner || 61.86 (£0.27) 61.67 (+0.21) 13.35 (£0.87)
Geometric p-walk || 58.66 (£0.28) || 58.36 (£0.94) || 27.67 (£0.95)
Geometric walk || 64.34 (£0.27) || 63.51 (+ 0.18) || 21.68 (+0.94)
Graphlet count || 66.00 (+£0.07) || 66.59 (£0.08) || 32.70 (£1.20)
Shortest path || 73.47 (£0.11) || 73.07 (£0.11) || 41.68 (£1.79)
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Image classification (Harchaoui and Bach, 2007)

COREL14 dataset

@ 1400 natural images in 14 classes

e Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination

(M).

Performance comparison on Corel14

o BN
o Hr
=in
o TH
H_ T}

Kernels
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Summary: graph kernels

What we saw
@ Kernels do not allow to overcome the NP-hardness of subgraph
patterns.
@ They allow to work with approximate subgraphs (walks, subtrees) in
infinite dimension, thanks to the kernel trick.
@ However: using kernels makes it difficult to come back to patterns
after the learning stage.
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Outline

© Kernels and RKHS

© Kernel tricks

© Kernel Methods: Supervised Learning

@ Kernel Methods: Unsupervised Learning

© The Kernel Jungle

o Kernels on graphs

@ Characterizing probabilities with kernels
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Graphs

Motivation

Data often come in the form of nodes in a graph for different reasons:
@ by definition (interaction network, internet...)
e by discretization/sampling of a continuous domain

@ by convenience (e.g., if only a similarity function is available)
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Example: web
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Example: protein-protein interaction
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Kernel on a graph

@ We need a kernel K (x,x’) between nodes of the graph.

e Example: predict protein functions from high-throughput
protein-protein interaction data.
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General remarks

Strategies to design a kernel on a graph

@ X being finite, any symmetric semi-definite matrix K defines a valid
p.d. kernel on X.
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General remarks

Strategies to design a kernel on a graph

@ X being finite, any symmetric semi-definite matrix K defines a valid
p.d. kernel on X.
@ How to “translate” the graph topology into the kernel?

o Direct geometric approach: K;; should be “large” when x; and x; are
“close” to each other on the graph?

o Functional approach: || f ||k should be “small” when f is “smooth”
on the graph?

o Link discrete/continuous: is there an equivalent to the continuous
Gaussian kernel on the graph (e.g., limit by fine discretization)?
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Outline
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o Kernels on graphs

@ Graph distance and p.d. kernels
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Conditionally p.d. kernels

Hilbert distance

@ Any p.d. kernel is an inner product in a Hilbert space

K(x,x’) = <¢(x)7¢(x')>H i

@ It defines a Hilbert distance:

dk (x,x')2 = K (x,x) + K (x',x') — 2K (x,x) .

e —d2 is conditionally positive definite (c.p.d.), i.e.:

VvVt >0, exp (—tdK (x,x’)2> is p.d.
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Example

A direct approach
@ For X = R", the inner product is p.d.:

K(x,x)=x"x.

@ The corresponding Hilbert distance is the Euclidean distance:

dx (x,x’)2 =x'x+x"x —2xTx' = ||x — X/||2.
e —d2 is conditionally positive definite (c.p.d.), i.e.:

Vt>0, exp(—t|[x— x’||2) is p.d.
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Graph distance

Graph embedding in a Hilbert space
@ Given a graph G = (V, E), the graph distance dg(x, x") between
any two vertices is the length of the shortest path between x and x’.

@ We say that the graph G = (V/, E) can be embedded (exactly) in a
Hilbert space if —d¢ is c.p.d., which implies in particular that
exp(—tdg(x, x)) is p.d. for all t > 0.
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Graph distance

Graph embedding in a Hilbert space
@ Given a graph G = (V, E), the graph distance dg(x, x") between
any two vertices is the length of the shortest path between x and x’.
@ We say that the graph G = (V/, E) can be embedded (exactly) in a
Hilbert space if —d¢ is c.p.d., which implies in particular that
exp(—tdg(x, x)) is p.d. for all t > 0.

Lemma
@ In general graphs cannot be embedded exactly in Hilbert spaces.
@ In some cases exact embeddings exist, e.g.:

o trees can be embedded exactly,
o closed chains can be embedded exactly.

505 /785



Example: non-c.p.d. graph distance

15

01112
102 21
de=112 0 2 1
1 2201
21110

- ({e(‘OQC’G("J))D = -0.028 < 0.
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Graph distances on trees are c.p.d.

Proof

Let G = (V, E) be a tree;

Fix a root xg € V;

Represent any vertex x € V by a vector ®(x) € RIEl, where
®(x); = 1 if the i-th edge is part of the (unique) path between x
and xp, 0 otherwise.

Then

do(x, ') = || &(x) — &(x') [|?,
and therefore —dg is c.p.d., in particular exp(—tdg(x, x)) is p.d.
for all t > 0.
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Example

|:e_dG(i7j)i| —

0.14
0.37
0.14
0.05

0.14

0.37
0.14
0.05

0.37
0.37

0.37
0.14

0.14
0.14
0.37

0.37

0.05
0.05
0.14
0.37
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Graph distances on closed chains are c.p.d.

Proof: case |V|=2p
@ Let G = (V, E) be a directed cycle with an even number of vertices
VI =2p.
e Fix a root xg € V, number the 2p edges from xg to xp;
o Label the 2p edges with ey, ..., ey, —e1,...,—e, (vectors in RP);

o For a vertex v, take ®(v) to be the sum of the labels of the edges in
the shortest directed path between xp and v.
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Another interesting graph

o Let S, the set of permutations of n
items (symmetric group)

o Cayley graph G: connect two
permutations when they differ by one
adjacent transposition

@ dg can be computed in O(nlog n)
how?

@ dg is c.p.d. why?
@ See Jiao and Vert (2017)

Cayley graph of Sy
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Summary on graph distance

@ Some graph distances are c.p.d, some are not

@ There is a large literature in mathematics on how to " approximately”
embed a graph; maybe this could be useful for machine learning?

o Graph distance is very sensitive to "noise” in edges

@ We need other approaches to define a p.d. kernel that would work

for all graphs, and be less sensitive to noise in the edges.
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Outline
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o Kernels on graphs

@ Construction by regularization
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Functional approach

Motivation
@ How to design a p.d. kernel on general graphs?
@ Designing a kernel is equivalent to defining an RKHS.

@ There are intuitive notions of smoothness on a graph.

Idea
@ Define a priori a smoothness functional on the functions f : X — R;

@ Show that it defines an RKHS and identify the corresponding kernel.
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Notations

o X = (x1,...,Xm) is finite.

@ For x,x’ € X, we note x ~ x to indicate the existence of an edge
between x and x’

@ We assume that there is no self-loop x ~ x, and that there is a
single connected component.

@ The adjacency matrix is A € R™*™:
1 ifin~y,
Aij = :
0 otherwise.

@ D is the diagonal matrix where D; ; is the number of neighbors of x;
(Dii = 3201 Aig)-
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|

O O O O
O O O N O
o O Mmoo
o - O O O
- O O O O
N~N——

Il

Q
—
o O o -+ O
oo 4O -
— - O - O
o O+ O O
OO+ O O
N

I

<

785

515



Graph Laplacian

Definition
The Laplacian of the graph is the matrix L = D — A.
1
3 5
4
2
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Properties of the Laplacian

Lemma
Let L = D — A be the Laplacian of a connected graph:

@ Forany f: X — R,
Q(F) == (F(xi) = f(x))>=f"LF

inj

o L is a symmetric positive semi-definite matrix

e 0 is an eigenvalue with multiplicity 1 associated to the constant
eigenvector 1 = (1,...,1)
@ The image of L is

Im(L) = {fE]R’":zm:f,-zo}
i=1
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Proof: link between Q(f) and L

Q(F) = (F(x) = f(x))*

in~j

= 3 (F O + £ () = 2F () £ ()

i~j

= Diif ()2 —2)  f(x)f(x))
i=1 i~

= f Df — fTAf

=f'Lf
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Proof: eigenstructure of L

o L is symmetric because A and D are symmetric.

o Forany f € R™, fTLf = Q(f) > 0, therefore the (real-valued)
eigenvalues of L are > 0 : L is therefore positive semi-definite.

e f is an eigenvector associated to eigenvalue 0
iff FTLF=0
3 (F (x0) — £ (%)) = 0,
iff £ (x;) = f (x;) when i ~ j,
iff £ is constant (because the graph is connected).
o L being symmetric, Im(L) is the orthogonal supplement of Ker(L),
that is, the set of functions orthogonal to 1. [
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Our first graph kernel

Theorem
The set H = {f e R™: Y ", f; = 0} endowed with the norm
Q) = (F(x) = f(x)))?
b~

is a RKHS whose reproducing kernel is L*, the pseudo-inverse of the
graph Laplacian.
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In case of...

Pseudo-inverse of L

Remember the pseudo-inverse L* of L is the linear application that is
equal to:

e 0 on Ker(L)

o L7 on Im(L), that is, if we write:

m
L= Z )\,’U,’U,T
i=1
the eigendecomposition of L:
L* = Z (/\,')_1 u,-u,-T.
Ai#0

@ In particular it holds that L*L = LL* = [y, the projection onto
Im(L) =H.
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Proof (1/2)
@ Resticted to H, the symmetric bilinear form:

(f.g)=f'Lg

is positive definite (because L is positive semi-definite, and
H = Im(L)). It is therefore a scalar product, making of #H a Hilbert
space (in fact Euclidean).

@ The norm in this Hilbert space H is:

| FI?=(f,f)=FTLF=Q(f) .
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Proof (2/2)

To check that H is a RKHS with reproducing kernel K = L*, it suffices
to show that:

Vx € &, Ky« e H,
V(x,f)e X xH, (f,Ky)="F(x).

o Ker(K) = Ker (L*) = Ker (L), implying K1 = 0. Therefore, each
row/column of K is in H.

e For any f € H, if we note g; = (K(i,+),f) we get:
g =KLf = L*Lf = My (F) = £ .

As a conclusion K = L* is the reproducing kernel of H. O
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Example

0.88 —-0.12 0.08 —-0.32 —-0.52

-0.12 0.88 0.08 —-0.32 —-0.52

L = 0.08 0.08 0.28 -0.12 -0.32
-0.32 -0.32 -0.12 048 0.28

-052 -052 -032 0.28 1.08
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Interpretation of the Laplacian

£,
l dx L
-1 i

1+1

Af(x) = f"(x)
N f'(x + dx/2) — f'(x — dx/2)
dx
f(x 4 dx) — f(x) — f(x) + f(x — dx)

~

dx?
_ fia+ i1 — 2f(x)
N dx?
_LF(i)
Codx?
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Interpretation of regularization

For f =[0,1] — R and x; = i/m, we have:

0-£( ()1 (3)
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Motivation

@ Consider the normalized Gaussian kernel on RY:

1 x — x|
) = e ().
Tt)2

@ In order to transpose it to the graph, replacing the Euclidean distant
by the shortest-path distance does not work.

@ In this section we provide a characterization of the Gaussian kernel
as the solution of a partial differential equation involving the
Laplacian, which we can transpose to the graph: the diffusion
equation.

@ The solution of the discrete diffusion equation will be called the
diffusion kernel or heat kernel.
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The diffusion equation

Lemma

For any xqg € RY, the function:

1 X — X |12
Kxo (%, 1) = Ke (x0,X) = ——— exp (_”0”>
(4rt)2 4t

is solution of the diffusion equation:

0
aKxO (x,t) = AKy, (x, t)

with initial condition Ky, (x,0) = dx,(X)

(proof by direct computation).
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Discrete diffusion equation

For finite-dimensional f; € R™, the diffusion equation becomes:

0
aft = _Lft
which admits the following solution:

fo = foe™
with

—t 2, 3
e :I_tL_'_EL_aL + ...
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Diffusion kernel (Kondor and Lafferty, 2002)

This suggest to consider:
K=et

which is indeed symmetric positive semi-definite because if we write:
m
L=> Nuu (N =>0)
i=1

we obtain:
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Example: complete graph

m

loe ™ for i # j.

m

1+(m—1)e" ™" fori =i
K = { or i =,
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Example: closed chain
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Outline

© The Kernel Jungle

o Kernels on graphs

@ Harmonic analysis on graphs
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Motivation

@ In this section we show that the diffusion and Laplace kernels can be
interpreted in the frequency domain of functions

@ This shows that our strategy to design kernels on graphs was based
on (discrete) harmonic analysis on the graph

@ This follows the approach we developed for semigroup kernels!
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Spectrum of the diffusion kernel

o Let 0 = )A1 < A2 < ... < Ay be the eigenvalues of the Laplacian:

L= Z)\;U;U,T (A >0)
i=1

@ The diffusion kernel K; is an invertible matrix because its
eigenvalues are strictly positive:

E et'u,
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Norm in the diffusion RKHS

@ Any function f € R™ can be written as f = K (K‘lf), therefore its
norm in the diffusion RKHS is:

|1l = (FTKY) K (KTH) = FTR2E

o Fori=1,...,m, let:
fi=ulf

be the projection of f onto the eigenbasis of K.

@ We then have:

m
IF1 = TR = ™2
i=1

2 2, 2
‘ e “dw ...

@ This looks similar to [ ‘ f(w)
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Discrete Fourier transform
Definition

. . ANT
The vector f = <f1, ey fm) is called the discrete Fourier transform of
f eR"

@ The eigenvectors of the Laplacian are the discrete equivalent to the

sine/cosine Fourier basis on R".

@ The eigenvalues ); are the equivalent to the frequencies w?

@ Successive eigenvectors “oscillate” increasingly as eigenvalues get
more and more negative.
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Examples

Lambda =0

lambda = 0
<
3
¢ g e @ e @ = &
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o
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2 4 6 8
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Examples

-0.2 0.0 0.2 0.4

-0.4

lambda = 0.12

Lambda = 0.76
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Examples

lambda = 0.47 Lambda = 0.83

1 N

0.4

-0.2 0.0
il il
\.
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Examples

lambda = 1

< | p—
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o

o

3 °
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T T
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Lambda = 1.3
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Examples

lambda = 1.7 Lambda = 2.2
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o ° °
o
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o
o
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T T T T

2 4 6 8
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Examples

lambda = 2.3 Lambda = 2.8

0.0

-0.4
|
e
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Examples

lambda = 3 Lambda = 3.6

° ° o

00 01 02 03 04

-0.2
|

°o—e °o—o0 ° .
T T T T .
2 4 6 8 .
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Examples

lambda = 3.5 Lambda = 4.2
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Examples

lambda = 3.9 Lambda = 6.3
< ° °
3
o o b
8
o |
o
° °
o
S
]
< ° °
34
°
T T T T
2 4 6 8

539 /785



Generalization

This observation suggests to define a whole family of kernels:

m

K, = Z r()\,-)u,-u,T

=1
associated with the following RKHS norms:
m /?-2

f 2 _ i
H ||K, ;f()\/)

where r : Rt — R} is a non-increasing function.
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Example : regularized Laplacian

A) = 0
") A+e €=

B TR S -1
K—iz:;)\i+6u,ui = (L+¢l)

m

I = FTRTH = (F (i) = £ (%)) +e > F(xi)
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Example

L+t =

0.60
0.10
0.19
0.08
0.04

0.10
0.60
0.19
0.08
0.04

0.19
0.19
0.38
0.15
0.08

0.08
0.08
0.15
0.46
0.23

0.04
0.04
0.08
0.23
0.62
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Outline

© The Kernel Jungle

o Kernels on graphs

@ Applications
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Applications 1: graph partitioning

@ A classical relaxation of graph partitioning is:

f@]lg;{iwj(f, f;) S-t-zi:f, 1

@ This can be rewritten

m;‘axz f2st. |fllu<1
1

@ This is principal component analysis in the RKHS (“kernel PCA")
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Applications 2: search on a graph

o Let x1,...,xq be a set of g nodes (the query). How to find
“similar” nodes (and rank them)?

@ One solution:

mfianHH st. f(x)>1fori=1,...,q.
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Application 3: Semi-supervised learning
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Application 3: Semi-supervised learning
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Application 4: Tumor classification from microarray data
(Rapaport et al., 2006)

Data available
@ Gene expression measures for more than 10k genes

@ Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)
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Application 4: Tumor classification from microarray data
(Rapaport et al., 2006)

Data available
@ Gene expression measures for more than 10k genes

@ Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

Goal

@ Design a classifier to automatically assign a class to future samples
from their expression profile

@ Interpret biologically the differences between the classes
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Linear classifiers

The approach
o Each sample is represented by a vector x = (xi, ..., xp) where
p > 10° is the number of probes

o Classification: given the set of labeled sample, learn a linear decision

function:
p

F(x) =Y Bixi+Bo,

i=1
that is positive for one class, negative for the other

@ Interpretation: the weight 8; quantifies the influence of gene i for
the classification
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Linear classifiers

Pitfalls

@ No robust estimation procedure exist for 100 samples in 10°
dimensions!

@ It is necessary to reduce the complexity of the problem with prior
knowledge.
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Example : Norm Constraints

The approach

A common method in statistics to learn with few samples in high
dimension is to constrain the norm of 3, e.g.:

e Euclidean norm (support vector machines, ridge regression):

1812 =30, 67
o Li-norm (lasso regression) : || 8|1 = >, |5i|
Cons
Pros o Limited interpretation
e Good performance in (small weights)
classification @ No prior biological

knowledge
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Example 2: Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes (< 20) whose
expression are enough for classification. Interpretation is then about the
selected genes.

Cons
Pros

@ The gene selection
process is usually not
robust

o Good performance in
classification

o Useful for biomarker

selection o Wrong interpretation is

the rule (too much
correlation between
genes)

@ Apparently easy
interpretation
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Pathway interpretation

Motivation

@ Basic biological functions are usually expressed in terms of pathways
and not of single genes (metabolic, signaling, regulatory)

@ Many pathways are already known

@ How to use this prior knowledge to constrain the weights to have an
interpretation at the level of pathways?

Solution (Rapaport et al., 2006)
@ Constrain the diffusion RKHS norm of 3

@ Relevant if the true decision function is indeed smooth w.r.t. the
biological network
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Pathway interpretation

N Glycan
biosynthesis

Bad example

Gloconcogencss
o @ The graph is the
complete known
metabolic network of the
Nivogen, budding yeast (from
e KEGG database)
@ We project the classifier
weight learned by a SVM

ergosterol metabolism o; , % A o Good C|aSSificati0n
b € Osdaine accuracy, but no possible

phosphorylation,
TCA cycie

henylataine,srosine anddy | interpretation!

Protein
Sulfur Kinaces
metabolism i) nases

tryptophan biosynthesis Purine
metabolism
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Pathway interpretation

Good example

@ The graph is the complete
known metabolic network
of the budding yeast
(from KEGG database)

@ We project the classifier
weight learned by a
spectral SVM

@ Good classification
accuracy, and good
interpretation!
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Part 6

Characterizing probabilities with
kernels



Introduction

@ We have seen how to represent each individual data-point by an
embedding in some feature space.

@ This allows to compare data points by evaluating the kernel.

@ Now we are interested in comparing two or more sets of data-points,
or more generally distributions of data points.
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Introduction

@ We have seen how to represent each individual data-point by an
embedding in some feature space.

@ This allows to compare data points by evaluating the kernel.

@ Now we are interested in comparing two or more sets of data-points,
or more generally distributions of data points.

Disclaimer: Some of the figures and slides are borrowed from the lecture
by Arthur Gretton which you can find here:
https://www.gatsby.ucl.ac.uk/~gretton/teaching.html
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Motivation |: Comparing two distributions

o Data: Samples from unknown distributions P and Q.
o Goal: do P and Q differ?

Differences between dogs and fish.
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Motivation |: Comparing two distributions

@ Data: Samples from unknown distributions P and Q.
@ Goal: do P and Q differ?

Samples from P

Ao
ot
W

-
-0~

Samples from Q

s
A el

o
WA A
Wi
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Motivation |: Comparing two distributions

@ Data: Samples from unknown distributions P and Q.
@ Goal: do P and Q differ?

LFP near spike burst LFP without spike burst

LFP amplitude
LFP amplitude

20 A 0 80 100

0 6
Time

Difference in brain signals: Do local field potential (LFP) signals change
when measured near a spike burst?
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Motivation |: Comparing two distributions

@ Data: Samples from unknown distributions P and Q.

@ Goal: do P and Q differ?

LFP amplitude

Neural data, n=50

20

40 60
Time

80

100

LFP amplitude

Neural data, n=500

-0.04 -
0

40 60 80 100
Time

Difference in brain signals: Do local field potential (LFP) signals change
when measured near a spike burst?

Comparaing the means?
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Motivation |l: Detecting dependence

Xl: Honourable senators, [ have a guestion for
the Leader of the Government in the Senate with
regard to the support funding to farmers that has
been announced. Most farmers have not received
any money yet.

X2: No doubt there is great pressure on provin-
cial and municipal governments in relation to the
issue of child care, but the reality is that there
have been no cuts to child care funding from the
federal government to the provinces. In fact,
we have increased federal investments for early
childhood development.

}’1: Honorables sénateurs, ma gquestion
s’adresse au leader du gouvernement an Sénat
et concerne l'aide financiére qu'on a annoncée
pour les agriculteurs. La plupart des agriculteurs
n’ont encore rien reu de cet argent.

}’2:11 est évident que les ordres de gouverne-
ments provinciaux et municipaux subissent de
fortes pressions en ce qui concerne les ser-
vices de garde, mails le gouvernement n'a pas
réduit le financement qu’il verse aux provinces
pour les services de garde. Au contraire, nous
avons augmenté le financement fédéral pour le
développement des jeunes enfants.
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Motivation |l: Detecting dependence

Dependent va

Sample from P, .,

0.5 ‘, -1.5!
o ° ‘ -15 -1 -5 0 05 1 15
> o .8 ‘e
.
c} W}
05 ol Independent P, =P, P,

562 /

785



Qutline

© Kernels and RKHS

© Kernel tricks

© Kernel Methods: Supervised Learning
@ Kernel Methods: Unsupervised Learning
© The Kernel Jungle

@ Characterizing probabilities with kernels
@ Kernel mean embedding

€D Onen Proahlemce and Recearch Tanicc
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Feature mean difference

@ Simple example: Samples from 2 Gaussians with same variance but

different means.

@ ldea: Look at difference in means of features of the samples.

Prob. density

Two Gaussians with different means

0.4

P

0.35}

0.3F

0.25

o
o

°
o
o

o
e

0.05}

Xol

Compare
T
fp =4 ZX:',
i=1
1M
j=1
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Feature mean difference

@ Simple example: Samples from 2 Gaussians with same mean but
different variances.

o ldea: Look at difference in means of features of the samples. Here
p(x) = (x,x°).

Two Gaussians with different variances

0.4

P

—

e 4

o
w
9

x||  Compare

o
N 9
o W

Prob. density
o
n

=1
0.15 LM
0.1 fig = M Z o(¥))
0.05| j=1
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Feature mean difference

@ Simple example: Centered Gaussian and Laplace distributions: same
mean and variance.

o ldea: Look at difference in means of high order features of the
samples: ¢(x) = (x,x?,...) (RKHS).
Gaussian and Laplace densities

07
06
Compare
> 05 N
= .
c 04f N
3 fie = & D e(x),
0 0.3 '
o
o

o
[

0.1
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Kernel Mean Embedding

Definition

Given a kernel K defined on a topological set X with corresponding
RKHS #H, the mean embedding of a Borel probability distribution P on X
is the function up : X — R in H defined as

pe(y):=Ex-p[K(X,y)]
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Kernel Mean Embedding

Definition

Given a kernel K defined on a topological set X with corresponding
RKHS #H, the mean embedding of a Borel probability distribution P on X
is the function up : X — R in H defined as

pe(y):=Ex~p[K(X,y)]
e Forany x, x' in X,

K(X7X/) = <KX> Kx’)'Ha

@ The kernel trick:
Forany f € H and x € X,

fF(x) = (f, K
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Kernel Mean Embedding

Definition

Given a kernel K defined on a topological set X with corresponding
RKHS #H, the mean embedding of a Borel probability distribution P on X
is the function up : X — R in H defined as

pe(y):=Ex-p[K(X,y)]

e Forany x, X' in X, @ For any Borel measure P and Q,
K(X7X/) = <KX7 Kx’)'Ha E(X7y)NP’@K(X, Y) = </L[p>,,U,Q>H,
@ The kernel trick: @ The generalized kernel trick:
Forany f € H and x € &, For any f € H and Borel measure P,

f(X) = <f7 KX)H EXNIP[f(X)] = <f>M]P’>’H
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Kernel Mean Embedding

Kernel Mean Embedding

The kernel mean embedding: pp = Exp[Kx]
The generalized kernel trick: Ex.p[f(X)] = (f, pp)y for all f € H.
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Kernel Mean Embedding

Kernel Mean Embedding
The kernel mean embedding: pp = Exp[Kx]

The generalized kernel trick: Ex.p[f(X)] = (f, pp)y for all f € H.

@ Mean embedding pp summarizes IP:
Can compute expectations under P of
all functions in H using pp.

@ In practice, you can estimate up using
N i.i.d. samples from P:

1

N
pe(x) = = S K(Xi,x), X "KP
i=1

=
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Kernel Mean Embedding

Kernel Mean Embedding

The kernel mean embedding: pp = Exp[Kx]
The generalized kernel trick: Ex.p[f(X)] = (f, pp)y for all f € H.

@ Mean embedding pp summarizes IP:
Can compute expectations under P of 0.03
all functions in H using pp.

Il Histogram
- Embedding

0.02
@ In practice, you can estimate up using
N i.i.d. samples from P:

0
X

fn(x) = ~

=

N
S K(Xix), XK
i=1
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Kernel Mean Embedding

Kernel Mean Embedding

The kernel mean embedding: pup = Exp[Kx]
The generalized kernel trick: Ex.p[f(X)] = (f, up)y for all f € H.

@ Mean embedding pup summarizes IP:
Can compute expectations under P of 0.03
all functions in H using pp.

Il Histogram
—Embedding

0.02
@ In practice, you can estimate up using
N i.i.d. samples from P: 0.01
0
N 1 & iid. -2 % 2
fip(x) = NZK(X;,X), X "= P

i=1

Does the mean embedding up exist? i.e. an element up € H such that
Ex~plf(X)] = (f, pp)3, VF € H.
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Existence of mean embeddings

Proposition
Let P be a Borel probability distribution on a set X endowed with its
Borel sigma algebra. Let K be a p.d. kernel defined on X with

corresponding RKHS H. Assume that Exp[\/K(X, X)] < co. Then
there exits a unique element up € H such that

Ex~p[f(X)] = (f, pp)3, Vf € H.
In particular, for any y € X, it holds that:

pe(y) = (Ky, up) = Ex~p[K(X,y)].
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Existence of mean embeddings

Proposition

Let P be a Borel probability distribution on a set X endowed with its
Borel sigma algebra. Let K be a p.d. kernel defined on X’ with
corresponding RKHS H. Assume that Ex.p[\/K(X, X)] < co. Then
there exits a unique element up € H such that

Ex~plf (X)] = (f, up)n, Vf € H.

In particular, for any y € X, it holds that:

pe(y) = (Ky, up) = Ex~p[K(X,y)].

Proof:
The linear form on H: Tpf = Ex..p[f(X)] is bounded by assumption:

| Tef| < Ex~p[[f (X)|] = Ex~pl|(f, Kx)3l] < Ex~plv/ KX, X)[Il2].
Hence, by Riesz's theorem, there exists up € H such that Tpf=(f, up)y.
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Qutline

© Kernels and RKHS

© Kernel tricks

© Kernel Methods: Supervised Learning
@ Kernel Methods: Unsupervised Learning
© The Kernel Jungle

@ Characterizing probabilities with kernels

@ The Maximum Mean Discrepancy
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Motivation: Comparing two distributions

@ Data: Samples from unknown distributions P and Q.
@ Goal: do P and Q differ?

Differences between dogs and fish.

571 /785



The Maximum Mean Discrepancy

The maximum mean discrepancy (MMD) is the RKHS distance between
mean embeddings:

MMD*(P, Q) =||up — poll3,
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The Maximum Mean Discrepancy

The maximum mean discrepancy (MMD) is the RKHS distance between
mean embeddings:

MMD?(P, Q) =||pup — poll3,
=(pp, )y + (o, ho)H — 2(up, o)1
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The Maximum Mean Discrepancy

The maximum mean discrepancy (MMD) is the RKHS distance between
mean embeddings:

MMD?(P,Q) =||up — o3,
=(up, pp)n + (1o, p)H — 2(up, po)H
=Ex x/~pep[k(X, X')] + Ey y~oeolk(Y, Y')]
—2Ex y~reolk(X, Y)]
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The Maximum Mean Discrepancy

The maximum mean discrepancy (MMD) is the RKHS distance between
mean embeddings:

MMD?(P, Q) =||up — poll3
=(up, pip)H + (1Q, HQ)H — 2(up, HO)H
=Ex x'~pep[k(X, X')] + Ey yoeolk(Y, Y')]
— 2Ex,y~paolk(X, Y)]

o Intra-similarity terms : Ex x/.pgp[k(X, X’)] and
Ey,y~oeolk(Y, Y')].

o Inter-similarity term: Ex v pgolk(X, Y)].

@ In general, MMD is a semi-metric: (MMD(P,Q) =0 % P = Q).

@ For some kernels (called characteristic kernels), MMD is a metric
(MMD(P,Q) =0 < P=0Q).

@ From now on, we assume MMD is a metric. Later, we'll say more
about characteristic kernels. 572/785



Unbiased esitimation of the MMD

@ Data: i.i.d. samples from P and Q

et " W

-
s

e

(tsh;. dog,) - Ik(ishi )

5 o
:f
[
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Unbiased esitimation of the MMD

@ Data: i.i.d. samples from P and Q

R
= I

“»

! K{dogy fsh,)

K(ishy.dog,) |

Biased estimate of the MMDZ'

MMD2(P, Q) = ZK(dog,, dog;) + Z K(fish;, fish;)
ij iJ

2 .
~ M Z k(dog;, fish;)
i
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Unbiased esitimation of the MMD

@ Data: i.i.d. samples from P and Q

Tyt = I

>

”e dog;, dog;) k(dog,, fish;)

- .----- vz

iy dog,) |

Unbiased estimate of the MMD?:
— 1 1 . .
MMD2(P, Q) = O > K(dog;, dogj) + M) > K(fish;, fish;)
i#j i#j

2 .
~ N Z k(dog;, fish;)
N}
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MMD as an Integral Probability Metric

Integral Probability Metric

Let F be a set of measurable functions. An integral probability metric
associated to the class F is a semi-metric defined as

Dr(P,Q) := fS_lE.I-I;:EXN]p[f(X)] — Ey~olf(Y)]-
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MMD as an Integral Probability Metric

Integral Probability Metric

Let F be a set of measurable functions. An integral probability metric
associated to the class F is a semi-metric defined as

Dr(P,Q) := sup Exp[f(X)] — Ey~g[f(Y)]
feF
e MMD obtained by choosing F = {f € H|||f|l» < 1}:

MMD(P, Q) := ?gz Ex~p[f(X)] = Ev~olf(Y)]

[flla<1
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MMD as an Integral Probability Metric

Integral Probability Metric

Let F be a set of measurable functions. An integral probability metric
associated to the class F is a semi-metric defined as

Dx(P,Q) := iggExw[f(X)] —Evolf(Y)].

e MMD obtained by choosing F = {f € H|||f|l» < 1}:
MMD(P, Q) := sup Ex~p[f(X)] = Ey~olf(Y)]
€
fllz<1

@ Other choices for the set F:

o Bounded continuous — Dudley's metric.
o Bounded variations — Kolmogorov metric.
e Bounded Lipschitz — 1-Wasserstein distance.
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MMD as an Integral Probability Metric

e MMD obtained by choosing F = {f € H|||f|l% < 1}:

MMD(P, Q) = sup Ex~p[f(X)] — Ev~olf(Y)]

flln<1

Smooth function
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MMD as an Integral Probability Metric

e MMD obtained by choosing F = {f € H|||f|l% < 1}:

MMD(P, Q) = fgft Ex~p[f(X)] = Ey~ol[f(Y)]
1]l <1
= sup (f,pup — po)n

feH
[flla<1

2\
&
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MMD as an Integral Probability Metric

e MMD obtained by choosing F = {f € H|||f|l% < 1}:

/\'\Q
b*“‘ba\\ o
MMD(P,Q) = sup Ex~p[f(X)] = Ey~o[f(Y)] / A
||f||7-t<1
= sup (f,up— Ho)nu K/
e
=(f*, up — pQ)n e _HMPT RO
[ e — poll

f* is called the
witness function
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Outline

@ Characterizing probabilities with kernels

@ The Maximum Mean Discrepancy
@ Applications (I): Statistical testing using the MMD
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A statistical test using MMD

@ Data: Samples x1,...,xy and yi, ..., yy from unknown distributions
P and Q.

@ Goal: IsP = Q7
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A statistical test using MMD

@ Data: Samples x1,...,xy and yi, ..., yy from unknown distributions
P and Q.

@ Goal: IsP = Q7
Empirial estimate of the MMD:

MMD?(P, Q) = WD) 2K 09) + ey 2 KU
1751 '751

- WZK(XI'J/J')
i
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A statistical test using MMD

e Data: Samples xi,...,xy and yi, ..., yy from unknown distributions
P and Q.

o Goal: IsP =Q7?
Empirial estimate of the MMD:

I\/II\/IDZ(IF’ Q) = NN D) ZK Xi, ;) ZK Yis¥j)
1751 1751

- WEK(XH)’])
ij

@ Null hypothesis hg when P = Q.
MM%, Q) should be close to zero.

o Alternative hypothesis h; when P #= Q).
MM%, Q) should be far away from zero.

@ What do close or far away mean here?
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Behaviour of MMD when P # Q

Prob. of \/n x MMD

15

o
wn
T

I =rpirical PDF

s Gaussian fit

05 1

15 2
—_ 2
Vv x MMD

25

3.5
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Behaviour of MMD when P # Q

15 : : : : =,

I Epirical PDF

m——— Gaussian fit

Prob. of \/n x MMD

bt
3]
T

0
0 05 1 15 2 25 3 3.5

Vi x MMD

The statistic MME2(\]P’,Q) is asymptotically normal [Gretton, 2006]:

—

Va(MMD?(P, Q) — MMD?(P, Q))

JVED) — N(0,1).

where V(P, Q) is the asymptotic variance of v/n x (MMD?(P,Q)).
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Behaviour of MMD when P = Q

0.6 - — x? sum ]
: I Empirical PDF

2

Prob. of n x MM D
o
~

o
N

-2 0 2 4 6
n X ]M/]\?D2
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Behaviour of MMD when P = Q

06 ——x? sum ]
: I Empirical PDF

2

Prob. of n x MM D
o
~

—

nMMD?(P, Q) has an asymptotic
distribution [Gretton, 2006]:

°
N

nMMD2(B, Q) ~ 2 Ai(27 ~1)
i=1
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n X ]M/]\?D2
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Behaviour of MMD when P = Q

—— 2
0.6 of i 1
I Empirical PDF

2

—

nMMD?(P, Q) has an asymptotic
distribution [Gretton, 2006]:

°
N

Prob. of n x MM D
o
~

nMMD2(B, Q) ~ 2 Ai(27 ~1)
i=1
-2 0 2
n X AI?\?DZ

@ z; are i.i.d. standard gaussians: z; ~ A(0,1)

e \; are eigenvalues of the operator f — Ex.p[K(X, X)f(X)]
o K the centered kernel:

R(val) = (K(x,.) — pp, K(X/v D) — Hp)H-
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A statistical test using MMD

2

Prob. of n x MMD

n X ]\/sz

— MMD?(P 0, V(P P
To = AMMD2(E, 0) ~ {gzw ;-(;(2@)—+1>ﬁN( V) P20
i=1"M\~“ ) — -
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A statistical test using MMD

0.7

o
3

o Fix a significance level «
and quantile ¢, s.t.
P(To > Ca|h0) = Q.

o If Ty > ca, reject the
null, ie. (P=Q
unlikely)

2

o
o
T

Prob. of n x MM D

‘ o Otherwise, cannot reject
2 3 4 5 6 _ . .
nx MMD’ (]P)—Q IS |Ike|y)

—— MMD? (P V(P P
i=1 "M\~ ) = .
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A statistical test using MMD

0.7

—r.o © Fixasignificance level o
and quantile ¢, s.t.
P(To > Ca‘ho) = .

o If Tg > c,, reject the
null, ie. (P=Q
unlikely)

=
3

2

o
o
T

Prob. of n x MM D

¢a = 1 — a quantile when P = Q

@ Otherwise, cannot reject
— (P =Q is likely).

nx MMD’
How can we tell if Ty := nl\/ll\/l@, Q) > c.?

o Let T be a r.v. under the null distribution: T ~ 2% \;(z? —1).

o If the p-value p:=P7(T > Ty) < «, then Ty > c,.

e For Ty,..., T; samples from the null: p=|{j|T; > To}|/J.

Can use a permutation test to construct Ty, ..., 7.
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A statistical test using MMD
Original empirical MMD for dogs and fish:

X =%t W ... ]
mz :ﬁ ;k(:&,ﬂa)

1
* a1 & "0

2
i 7 Z k($i1YJ)
1,J

For each permutation j set Tj=nMMD?(P, Q)
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A statistical test using MMD

Permuted dog and fish samples (merdogs):

X:[ 2 'f-’w .
5

Permutation simulates
P=Q
For each permutation j set Ti=nMMD?(P, @)
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A statistical test using MMD

0.7

=
3

—r.o © Fixasignificance level o
(usually a small value:

2

Q o5+

(= 0.05.)

= ol _

. o If Tg > c,, reject the
S 03 . _

,g‘ ¢a = 1 — a quantile when P = Q nu”' I.€. (]P) - Q

= unlikely)

@ Otherwise, cannot reject
— (P =Q is likely).

nx MMD’
How can we tell if Ty := nl\/ll\/l@, Q) > c.?

o Let T be a r.v. under the null distribution: T ~ 2% \;(z? —1).

o If the p-value p:=P7(T > Ty) < «, then Ty > c,.

e For Ty,..., T; samples from the null: p=|{j|T; > To}|/J.

Can use a permutation test to construct Ty, ..., 7.
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Outline

@ Characterizing probabilities with kernels

@ The Maximum Mean Discrepancy

@ Applications (I1): Learning generative models
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Given samples from a distribution P over X', want a model that can
produce new samples from Q ~ P
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Given samples from a distribution P over X', want a model that can
produce new samples from Q ~ P

EGM: Q has density g(Y).
@ Support: the whole space.

e Training using maximum
likelihood or score
matching.

e Sampling using MCMC.
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Given samples from a distribution P over X', want a model that can
produce new samples from Q ~ P

EGM: Q has density g(Y). IGM: Y=G(Z) ~ Q with known Z~p.

@ Support: low dimensional
[Arjovsky 2017].

e Training by minimizing some well
chosen divergence D(P, Q).

e Sampling by pushing u forward
with G.

@ Support: the whole space.

e Training using maximum
likelihood or score
matching.

e Sampling using MCMC.
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Generative Adversarial Networks

Many successful applications:

@ Single-image super-resolution

bicubic SRResNet
(21.59dB/0.6423) (23.44dB/0.7777)

Ledig et al 2015

SRGAN
(20.34dB/0.6562)
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Generative Adversarial Networks

Many successful applications:

@ Image to image translation

Labels to Street Scene

Labels to Facade

BW to Color

TITII

T v

input output

Day to Night

output
__ Edges to Photo

input

Isola et al 2016

output

output

output
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Generative Adversarial Networks

Many successful applications:

@ Text to image generation

This small blue
bird has a short
pointy beak and
brown on its wings

This bird is
completely red
with black wings
and pointy beak

Zhang et al 2016
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Adversarial training [Goodfellow 2014]

Divergence D(IP, Q) defined by maximizing a variational objective G:

D(P,Q) := ?;‘fig(f’P’ Q)

o Critic: maximizes G(f,IP, Q) over f € F to find optimal critic f*.
o Generator: minimizes D(P, Q)=G(f*, [P, Q) over Q.

@ Recover the MMD when F is the unit ball in an RKHS H.
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Learning generative models using MMD

Goal is to solve the optimization problem:

mgin MMD?(PP, Qy)
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Learning generative models using MMD

Goal is to solve the optimization problem:

wnMMD%RQ@

@ Sample a mini-batch of i.i.d samples Xi, ..., Xg ~ P from data-set.
@ Sample a mini-batch of i.i.d. latent noise 71, ..., Zg ~ p.
© Generate IGM samples Y}, = Gy(Zp) ~ Qg for 1 < b < B.

@ Compute empirical loss £(0) := /\WE(P, Qp). (Differentiable in 6)
© Update parameters of the model using SGD:

0« 0 —yVL(O).

589 /785



Learning generative models using MMD

IGM trained using an RBF kernel on MNIST dataset.

7101184/

HEFICIFIE]
Cv/73lY

Need better image features.

@ In practice, choice of the kernel is crucial for good performance.
@ Hard to design a kernel for high dimensional data like images.
@ Why not learning it?
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Learning generative models using MMD

Goal is to solve the optimization problem:

min sup MMDZ(IP, Qy)
0 kek

e /Cis a family of kernels,
e ex: parmaterized by a neural network:

k(x,y) = h(e(x),¢(y))

where ¢ is a NN and h is a fixed p.d. kernel.

o Adaptively select an MMD that best discriminates between P and
current model Q.

@ In practice, alternate between gradient steps on k and on 6:
(Adversarial training).
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Learning generative models using MMD

IGM trained on MNIST dataset.

Samples are better!
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Learning generative models using MMD

IGM trained on CelebA dataset.

[A., Sutherland , Binkowski and Gretton, 2018]
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Learning generative models using MMD

IGM trained on CelebA dataset.

[A., Sutherland , Binkowski and Gretton, 2018]

@ More to the story: regularization, stability in optimization,

evaluation, etc
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Summary

@ It is possible to represent probability distributions using kernels
through the concept of mean embeddings.

@ The maximum mean discrepancy (MMD), allows to compare
probabilities by comparing their mean embeddings.

@ MMD can be used for various applications:

o Two sample tests
o Learning implicit generative models (like GANs)

Other applications include
o Dependence detection
o Feature selection
o Bling source separaion (e.g. ICA)

Often assume good kernels which do not discard information about
distributions: characteristic kernels.
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Qutline

© Kernels and RKHS

© Kernel tricks

© Kernel Methods: Supervised Learning
@ Kernel Methods: Unsupervised Learning
© The Kernel Jungle

@ Characterizing probabilities with kernels

@ Characteristic kernels

€D Onen Proahlemce and Recearch Tanicc
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Can mean embeddings characterize probabilities?

Question: Given two probability distributions P and Q with mean
embeddings up and ug, can we confidently tell if P and Q are different
or not based only on the summary given by up and ug?
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Can mean embeddings characterize probabilities?

Question: Given two probability distributions P and Q with mean
embeddings up and ug, can we confidently tell if P and Q are different

or not based only on the summary given by up and ug?

Example 1: Linear kernel K(x,x') = x"x’.

Two Gaussians with different means

Compare

/J,P(X) = EXNP[X]TX
#
po(x) = Ex~o[X] '

Prob. density
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Can mean embeddings characterize probabilities?

Question: Given two probability distributions P and Q with mean
embeddings up and ug, can we confidently tell if P and Q are different

or not based only on the summary given by up and ug?

Example 1: Linear kernel K(x,x') = x"x’.

Two Gaussians with different variances

0.4

0.35

03

o
)
3

pp(x) = Exp[X] " x

po(x) = Exg[X] " x

Prob. density
2 o
v n

e
o

0.05
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Can mean embeddings characterize probabilities?

Question: Given two probability distributions P and Q with mean
embeddings up and ug, can we confidently tell if P and Q are different
or not based only on the summary given by up and ug?

Example 2: Polynomial kernel K(x,x") = (x'x')2.

Two Gaussians with different variances

0.4

0.35

03

Prob. density
2 e 8
v n [3,]

e
o

0.05

pip(x) = Tr(Ex-p[XX ]xx")
”
po(x) = TF(EXNQ[XXT]XXT)
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Can mean embeddings characterize probabilities?

Question: Given two probability distributions P and Q with mean

embeddings up and ug, can we confidently tell if P and Q are different

or not based only on the summary given by up and ug?

Example 2: Polynomial kernel of order 2: K(x,x') = (x"x")2.
Gaussian and Laplace densities

0.7
—P,

0.6 —_—
> 0.5
g p(x) = Tr(Ex DX o)
.g 0.3 =
o

po(x) = Tr(ExolXX 1)

0.1

94 -3 -é -1‘ 1 2 3 4

Xot
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Can mean embeddings characterize probabilities?

Question: Are there kernels for which two mean embeddings pp and 1
are equal iff P = Q7
Example 3: Exponential kernel K(x,y) = exp(x"y).

pe(y) = Explexp(X T y)]
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Can mean embeddings characterize probabilities?

Question: Are there kernels for which two mean embeddings pp and 1
are equal iff P = Q7
Example 3: Exponential kernel K(x,y) = exp(x"y).

pp(y) =  Explexp(XTy)]

Moment generating function
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Can mean embeddings characterize probabilities?

Question: Are there kernels for which two mean embeddings pp and 1
are equal iff P = Q7
Example 3: Exponential kernel K(x,y) = exp(x"y).

pp(y) =  Explexp(XTy)]

Moment generating function

Classical result: If two probability distributions P and @Q have the same
moment generating functions, then P = @, meaning that:

Ex-2[f(X)] = Ey-olf(Y)l,  Vf € Cy(X).
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Can mean embeddings characterize probabilities?

Question: Are there kernels for which two mean embeddings pp and 1
are equal iff P = Q7
Example 3: Exponential kernel K(x,y) = exp(x"y).

pp(y) =  Explexp(XTy)]

Moment generating function

Classical result: If two probability distributions P and @Q have the same
moment generating functions, then P = @, meaning that:

EXNP[f(X)] = EYNQ[f( Y)], Vf € Cb(.)()

Intuitively: The RKHS and, in particular, the set of functions
{K, : x + exp(x"y)}yex is rich enough so that
Ep[K,(X)] = Eg[K,(X)] for all y € X guarantees that P = Q.
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Characteristic kernels

Definition

Let X be a topological set and P the set of Borel probability measures
on X. Consider a bounded measurable p.d. kernel K defined on X and
let H be its RKHS. The kernel K is said to be characteristic if the map
P >Pr up =Exp[Kx| € H is injective, i.e.:

VP,@GPZ,M[[D:;L@ = P=0Q.

o Equality of mean embeddings <= equality of expectations of
functions in H, i.e.:

up = pg <= EXN]}D[T’(X)] = EYNQ[f(Y)], VfeH
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Characteristic kernels

Definition

Let X be a topological set and P the set of Borel probability measures
on X. Consider a bounded measurable p.d. kernel K defined on X and
let H be its RKHS. The kernel K is said to be characteristic if the map
P >Pr up =Exp[Kx| € H is injective, i.e.:

VP,@EPZ,M[[D:;LQ = P=0Q.

o Equality of mean embeddings <= equality of expectations of
functions in H, i.e.:

up = pg <= EXN]}D[T’(X)] = EYN@[f(Y)], VfeH

o Equality of probability distributions <= Equality of expectations
of continuous and bounded functions on X, i.e.:

P= @ < EXNP[f(X)] = EYNQ[f(Y)], Vf € Cb(X)
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Characteristic kernels
Definition
Let X be a topological set and P the set of Borel probability measures
on X. Consider a bounded measurable p.d. kernel K defined on X and
let H be its RKHS. The kernel K is said to be characteristic if the map
P >Pr up =Exp[Kx| € H is injective, i.e.:

VP,@EPZ,M[[DZ}LQ = P=0Q.

o Equality of mean embeddings <= equality of expectations of
functions in H, i.e.:

up = pg <= EXN]}D[T’(X)] = EYNQ[f(Y)], VfeH

o Equality of probability distributions <= Equality of expectations
of continuous and bounded functions on X, i.e.:

P=0Q «— Exwp[f(X)] = EYNQ[f(Y)], Vf € Cb(X)
o A kernel K is characteristic if RKHS H is rich enough!
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Characteristic kernels via Universality

Definition

Let K be a p.d. kernel with RKHS H on a compact set X'. K is universal
if y — K(x,y) is continuous for all x € X and H is dense in C(X) in the
maximum norm ||.||cc-
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Characteristic kernels via Universality

Definition
Let K be a p.d. kernel with RKHS H on a compact set X'. K is universal

if y — K(x,y) is continuous for all x € X and H is dense in C(X) in the
maximum norm ||.||cc-

Proposition

Assume X is compact. If K is universal, then K is characteristic.
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Characteristic kernels via Universality

Definition

Let K be a p.d. kernel with RKHS H on a compact set X'. K is universal
if y — K(x,y) is continuous for all x € X and H is dense in C(X) in the
maximum norm ||.||cc-

Proposition
Assume X is compact. If K is universal, then K is characteristic.

proof: Let P and Q such that pp = pgp. We need to show that
EXNP[f(X)] = EYN@[f( Y)],Vf S C(X)

Fix f € C(X). By universality of K, H is dense in C(X) in the sup norm.
Hence, for any € > 0, there exists g € H such that ||f — g|loc < €.
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Characteristic kernels via Universality
Proof Next we make the expansion
[Ex~p[f(X)] = Ey~o[f(Y)]| <[Ex~p[f(X)] — Ex~plg(X)]|

+ [Eyo[f(Y)] = Evolg(Y)]|
+ [Ex~plg(X)] = Ey~glg(Y)]|-

The first two terms are upper-bounded by e by definition of g.The last
term is equal to 0 since Ex..p[g(X)] — Ev~olg(Y)] = (g, ur — 1o)n
and pp = pg by assumption.
Hence, we have shown that for any € > 0:

[Ex~p[f(X)] = Ey~o[f(Y)]] < 2¢

directly implying that |Exp[f(X)] — Eyo[f(Y)]| = 0.
The above holds for any f € C(X), meaning that P = Q.
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Criteria for Universality

Proposition (Steinwart 2001)

Let 0 <r<ooandf:(—r,r) = R bea C* function that admits an
expansion as a Taylor series in 0: f(x) =Y 2, ajx’. Let X be a compact
set in the open centered ball in RY of radius Vr. If a; >0 forall i >0,
then k(x,y) = f({x,y)) defines a universal kernel on X
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Criteria for Universality

Proposition (Steinwart 2001)

Let 0 <r<ooandf:(—r,r) = R bea C* function that admits an
expansion as a Taylor series in 0: f(x) =Y 2, ajx’. Let X be a compact
set in the open centered ball in RY of radius Vr. If a; >0 forall i >0,
then k(x,y) = f({x,y)) defines a universal kernel on X

Example 1: Exp kernel: K(x,y) = exp (x,y) on any compact X.
= 1

fx)=exp(x) =) ox',  K(xy)=f((x.y))
i=0
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Criteria for Universality

Proposition (Steinwart 2001)

Let 0 <r<ooand f:(—r,r) — R be a C* function that admits an
expansion as a Taylor series in 0: f(x) =Y 22, a;x". Let X be a compact
set in the open centered ball in RY of radius Vr. If a; >0 forall i >0,
then k(x,y) = f((x, y)) defines a universal kernel on X'

Example 1: Exp kernel: K(x,y) = exp (x,y) on any compact X.
[e'e) 1 ,'
f(X):eXp(X):Z-*Xa K(X,y):f(<X,y>)

il
i=0

Example 2: Gaussian kernel on the Unit Sphere
K(x,y) =exp(=3lx = y[?).

F(x) = e Lexp(x Z%‘ K(x,y) = f((x.9)).
By
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Criteria for Universality

Proposition (Steinwart 2001)

Let f : [0,27] — R be a continuous function that can be expanded in a
pointwise absolutely convergent Fourier series: f(t)=3°, a,cos(nt).
If a, > 0 for all n > 0, then the Kernel K(x,y):=T12, f(Ixi — yil)
defines a universal kernel on every compact subset of [0,27)9.
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Criteria for Universality

Proposition (Steinwart 2001)

Let f : [0,27] — R be a continuous function that can be expanded in a
pointwise absolutely convergent Fourier series: f(t)=3°, a,cos(nt).
If a, > 0 for all n > 0, then the Kernel K(x,y)::]_[:-j:1 f(|xi — yil)
defines a universal kernel on every compact subset of [0,27)9.

Example 1: The stronger regularized Fourier kernel (Vapnik 1998, p.470)
k(x,y) = (1~ ¢%)/(2 - 4qcos(x — y) + 24°)

forany 0 < g < 1.
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Just in case ...

Theorem: Stone-Weierstrass

Let (X, d) be a compact metric space and A a linear subspace of C(X).
Then A is dense in C(X) if

@ Ais an algebra for the product of functions.
@ A does not vanish: For all x € X, there exists f € As.t. f(x) # 0.
@ A separates points: For all x,y € X with x # y, there exists f € A,
s.t. f(x) # f(y).
Definition (Algebra)

Let A be a vector space and x : A X A — A be a binary operation on A.
Then A is an algebra if x is bilinear, i.e. for all x,y,z € A and a,b € R:

zX(x+y)=zxx+zXy
(x+y)xz=xxz+yxz
(ax) x (by) = (ab)(x x y).
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General criterion for Universality

Theorem: General criterion for universality (Steinwart, 2001)

Let X be a compact metric space and k be a continuous kernel on X
with k(x,x) > 0. Suppose there is an injective map ®(x) = {¢i(x)}i>o
such that k(x,y) = > 720 @i(x)pi(y). If the set A := span{yp;|i > 0} is
an algebra, then k is universal.
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General criterion for Universality

Theorem: General criterion for universality (Steinwart, 2001)

Let X be a compact metric space and k be a continuous kernel on X
with k(x,x) > 0. Suppose there is an injective map ®(x) = {¢i(x)}i>o
such that k(x,y) = > 720 @i(x)pi(y). If the set A := span{yp;|i > 0} is
an algebra, then k is universal.

Proof:

@ Ais a subset of C(&X'). Follows by continuity of the map x — ®(x).
Indeed, [|®(x)—P(y)|?=K(x,x)+K(y,y)—2K(x,y)<e for any
€ > 0 provided that y is close enough to x since K is continuous.

@ A does not vanish. Otherwise, we can find x such that ¢;(x) = 0 for
all i > 0, meaning that K(x,x) = 0: contradicts K(x, x) > 0.

@ A separates points. Otherwise, there exists x, y with x#y and
wi(x)=wi(y) for all i>0, hence ®(x)=P(y): contradicts P injective.

Hence A is dense in C(X') by Stone-Weierstrass theorem.
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General criterion for Universality

Theorem: General criterion for universality (Steinwart, 2001)

Let X be a compact metric space and k be a continuous kernel on X
with k(x,x) > 0. Suppose there is an injective map ®(x) = {¢i(x)}i>o
such that k(x,y) = > 720 @i(x)pi(y). If the set A := span{yp;|i > 0} is
an algebra, then k is universal.
Proof Continued: Let f € C(X) and € > 0.

@ Since A is dense in C(X), there exists g € As.t. ||[f — glleo < €.

e By definition of A, the function g is of the form g(x)=(w, ®(x))y,

with w = (w;)i>o s.t. w; =0 for any i > N for some N < occ.

@ Hence, g belongs to the unique RKHS H of K. This shows that H
is dense in C(X’), hence K is universal.
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Criteria for Universality

Proposition

Let 0 <r<ooand f:(—r,r) = R bea C*> function that admits an
expansion as a Taylor series in 0: f(x) =Y 72, a;jx’. Let X be a compact
set in the open centered ball in R? of radius r. If a; >0 forall i >0,
then k(x,y) = f({x,y)) defines a universal kernel on X
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Criteria for Universality

Proposition

Let 0 <r<ooandf:(—r,r) = R bea C* function that admits an
expansion as a Taylor series in 0: f(x) =Y 2, ajx’. Let X be a compact
set in the open centered ball in RY of radius Vr. If a; >0 forall i >0,
then k(x,y) = f((x,y)) defines a universal kernel on X.

Proof: For simplicity, take d = 1.
@ K is continuous and of the form:

K(X)y) = Z aiXiyi = <¢(X)) ¢(y)>/2
i=0
with ®(x) = (,/aix')i>0 which is injective.
o K(x,x)=3"%2,aix?>0 since a; > 0 for all i > 0.
o A:=span({@n|n > 0}) is the algebra of polynomials.

@ Hence K universal by the general criterion for universality.
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Criteria for Universality

Proposition (Steinwart 2001)

Let f : [0,27] — R be a continuous function that can be expanded in a
pointwise absolutely convergent Fourier series: f(t)=3°, a,cos(nt).
If a, > 0 for all n > 0, then the Kernel K(x,y):=T12, f(Ixi — yil)
defines a universal kernel on every compact subset of [0,27)9.
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Criteria for Universality

Proposition (Steinwart 2001)

Let f : [0,27] — R be a continuous function that can be expanded in a
pointwise absolutely convergent Fourier series: f(t)=>_1°, ancos(nt).
If a, > 0 for all n > 0, then the Kernel K(x,y)::]_[:-j:1 f(|xi — vil)
defines a universal kernel on every compact subset of [0, 27)9.

Proof: For simplicity, take d=1.
@ K is continuous and of the form:

K(x,y):ao—i—z an(sin(nx)sin(ny)+cos(nx)cos(ny)) = (®(x), P(y))s
n=0
where ®(x)=(¢n(x))n>0 defined by @o(x) = a0, Y2n—1=+/ansin(nx)
and @an(x) = /ancos(nx) for n > 1 is injective.
o K(x,x)=3 12 qan>0since a, > 0 for all n > 0.
o A:=span({@n|n > 0}) is an algebra (by trigonometric identities).
@ Hence K universal by the general criterion for universality.
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Summary: Characteristic kernels via Universality

@ On a compact metric set X, a universal kernel is a continuous kernel
whose RKHS (H) is dense in C(X') in the maximum norm.

@ Any universal kernel on X is characteristic, i.e. the mean embedding
map P — up=Ex..p[Kx]| € H defined on the set P of probability
distributions on X is injective:

VP,@EPZ/LPZIMQ = P=0Q.

@ Can construct a large class of universal kernels using Taylor series or
Fourier series with positive coefficients.

@ Both constructions follow from the General criterion for universality,
itself a consequence of Stone-Weierstrass theorem for compact
metric sets.

@ Question: What if X is not compact?
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Characteristic kernels via Fourier transform

o Consider a translation invariant kernel K on R? of the form
K(x,y)=r(x — y) with 5 : R — R.
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Characteristic kernels via Fourier transform

o Consider a translation invariant kernel K on RY of the form
K(x,y)=r(x — y) with x : R = R.

@ Bochner's theorem implies the existence of a finite non-negative
Borel measure A on R such that x(z) = [ e~ 2 "dA(w).
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Characteristic kernels via Fourier transform

o Consider a translation invariant kernel K on RY of the form
K(x,y)=r(x — y) with x : R = R.

@ Bochner's theorem implies the existence of a finite non-negative
Borel measure A on R such that x(z) = [ e~ 2 "dA(w).

@ Can express K as a Hermitian product in Ly(A) of Fourier features:

T

K(x,y) = (®(x), 2(y)) 1, (0 Wi O(x)(w) = e > ¥
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Characteristic kernels via Fourier transform
o Consider a translation invariant kernel K on RY of the form
K(x,y)=r(x — y) with x : R = R.

@ Bochner's theorem implies the existence of a finite non-negative
i T
Borel measure A on RY such that k(z) = [ ™7 WdA(w).

@ Can express K as a Hermitian product in Ly(A) of Fourier features:

T

K(x,y) = <(D(X)?¢(Y)>L2(A)a w = O(x)(w) = e X w

@ Can express the mean embedding up in terms of
F(P)=Ex~p[®(X)] the of Fourier transform of PP

pe(y) = Ex~p[(P(X), P(y)) (0] = (F(P), P(y)) 1o(n)
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Characteristic kernels via Fourier transform

o Consider a translation invariant kernel K on RY of the form
K(x,y)=r(x — y) with x : R = R.

@ Bochner's theorem implies the existence of a finite non-negative
Borel measure A on R? such that x(z) = | e_iZTWd/\(W).

o Can express K as a Hermitian product in Ly(A) of Fourier features:

T

K(x,y) = (®(x), ®(¥)) L,(n) w s O(x)(w) = e X' W

@ Can express the mean embedding up in terms of
F(P)=Ex~p[®(X)] the of Fourier transform of PP

pe(y) = Ex~p[(®(X), ®(y)) ,(0)] = (F(P), D(y)) L (n)

Fourier inversion theorem (Dudley 2002, Theorem 9.5.4)

If P and Q are two probability distributions on R? with the same Fourier
transform: F(P)=F(Q), then P=Q.
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Characteristic kernels via Fourier transform

o Consider a translation invariant kernel K on R? of the form
K(x,y)=r(x — y) with x : R = R.

@ Bochner's theorem implies the existence of a finite non-negative
Borel measure A on R such that k(z) = [e~2 "dA(w).

e Can express K as a Hermitian product in Ly(A) of Fourier features:
T

K(x,y) = (0(x), ®()anys W S(x)(w) = e ™ ™
@ Can express the mean embedding up in terms of
F(P)=Ex~p[®(X)] the of Fourier transform of P:

pe(y) = Ex~p[(P(X), P(y)) 0] = (F(P), P(y)) 1o(n)

Fourier inversion theorem (Dudley 2002, Theorem 9.5.4)

If P and Q are two probability distributions on RY with the same Fourier
transform: F(P)=F(Q), then P=Q.

The measure A must " preserve information contained” in the Fourier
transform F(IP). 608/ 785



Characteristic kernels via Fourier transform

Translation invariant characteristic kernels: (Sriperumbudur 2008)

Let K be a translation invanant kernel on RY of the form

K(x,y)=r(x — y) with k(z) = [ ez’ Y“dN(w) for some finite
non-negative Borel measure /\ on RY. The kernel K is characteristic if
and only if supp (A) = R9.
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Characteristic kernels via Fourier transform

Translation invariant characteristic kernels: (Sriperumbudur 2008)

Let K be a translation invanant kernel on RY of the form
K(x,y)=r(x — y) with x(z) = [ e~ “dA(w) for some finite
non-negative Borel measure /\ on RY. The kernel K is characteristic if
and only if supp (A) = RY.

o2
Example 1: Gaussian kernel K(x,y) = e~ 7 Ix¥I” The measure A is a

gaussian on R? with density w (1/\/27702)de_ﬁ“'””2. Since
supp(\) = RY, K is characteristic.
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Characteristic kernels via Fourier transform

Translation invariant characteristic kernels: (Sriperumbudur 2008)

Let K be a translation invanant kernel on RY of the form
K(x,y)=r(x — y) with x(z) = [ e~ “dA(w) for some finite
non-negative Borel measure /\ on RY. The kernel K is characteristic if
and only if supp (A) = RY.

o2
Example 1: Gaussian kernel K(x,y) = e~ 7 Ix¥I” The measure A is a

gaussian on R? with density w (1/\/27702)de_ﬁ““’”2. Since
supp(\) = RY, K is characteristic.

Example 2: Let k(z) = z71sin(z). Then K(x,y) = k(x — y) is not
characteristic: A is the uniform distribution on the [—1,1].
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Characteristic kernels: Summary

Definition

Let X be a topological set and P the set of Borel probability measures
on X. Consider a bounded measurable p.d. kernel K defined on X and
let H be its RKHS. The kernel K is said to be characteristic if the map

P3P up =Exp[Kx]| € H is injective, i.e.:
VP,QeP:up=pnp = P=0Q.

Criteria for characteristic kernels
@ On a compact set X, can use criteria for universality: A kernel is
universal if it continuous and its RKHS is dense in C(X).
o If K admits a Taylor expansion with positive coefficients.
e If K admits a Fourier expansion with positive coefficients.
o If ¥ =RY and K is translation invariant with associated
non-negative measure A: K characteristic <= supp (A) = R?
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Open Problems
and Research Topics
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© Kernels and RKHS

© Kernel tricks

© Kernel Methods: Supervised Learning
@ Kernel Methods: Unsupervised Learning
© The Kernel Jungle

@ Characterizing probabilities with kernels

e Open Problems and Research Topics
o Multiple Kernel Learning (MKL)
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Motivation

@ We have seen how to make learning algorithms given a kernel K on
some data space X

o Often we may have several possible kernels:

e by varying the kernel type or parameters on a given description of the
data (eg, linear, polynomial, Gaussian kernels with different
bandwidths...)

o because we have different views of the same data, eg, a protein can
be characterized by its sequence, its structure, its mass spectrometry
profile...

@ How to choose or integrate different kernels in a learning task?
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Setting: learning with one kernel

o Forany f: X — R, let " = (f(x1),...,f(xn)) € R"
o Given a p.d. kernel K : X x X — R, we learn with K by solving:

in R(F™) + M| F |2, . 4
min (F") + M 5%, (4)

where A > 0 and R : R” — R is an closed® and convex empirical
risk:

o R(u) =237 (ui — y;)? for kernel ridge regression

o R(u) =137, max(1 — yju;,0) for SVM

o R(u) =137 log(1+ exp(—y;u;)) for kernel logistic regression

3R is closed if, for each A € R, the sublevel set {u € R" : R(u) < A} is closed. For
example, if R is continuous then it is closed.
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Sum kernel

Definition
Let Ki,..., Ky be M kernels on X. The sum kernel Ks is the kernel on
X defined as

M
Vx,x' € X, Ks(x,x') = ZK,‘(X,X/).
i=1
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Sum kernel and vector concatenation

Theorem
Fori=1,...,M, let ; : X — H; be a feature map such that

Ki(x,X') = (®; (x),®; (x)),, -

i

Then Ks = Z,'\il Ki can be written as:
Ks(x7 X/) = <(D5 (X) 9 (DS (X/) >’H5 9

where &5 : X — Hs =H1 D ... D Hp is the concatenation of the
feature maps P;:

b5 (x) = (1 (x),..., Py (x)" .

Therefore, summing kernels amounts to concatenating their feature space
representations, which is a quite natural way to integrate different
features.
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Proof

For &5 (x) = (1 (x),...,®um(x))", we easily compute:
M
(®s(x), = Z (®; (x), H,-

[y

=

M

5" ki
s(x,x).

I
N
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Example: data integration with the sum kernel

Vol. 20 Suppl. 12004, pages i363-1370
DOI: 10.1093/bioinformatics/bth910

S Protein network inference from multiple

1

ol genomic data: a supervised approach
Y. Yamanishi*, J.-P. Vert? and M. Kanehisa'
.|

"Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho,
Uji, Kyoto 611-0011, Japan and 2Computational Biology group, Ecole des Mines de
Paris, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France

Kexp (Expression)

Kppi (Protein interaction)

Kjoc (Localization)

Kpny (Phylogenetic profile)

Kexp + Kppi + Kioc + Kphy
(Integration)

True positive

04

False positive
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The sum kernel: functional point of view

Theorem

The solution f* € Hy, when we learn with Ks = Z,'\il K; is equal to:

M
:Zfi*7

i=1

where (f*,...,fy) € Hk, X ... X Hk,, is the solution of:

M M
m|n R (Z n) +)\Z|| f,-H%LKi.

i=1
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Generalization: The weighted sum kernel

Theorem

The solution f* when we learn with K;, = E,Ai1 ;i K;, with
7,---,0m > 0, is equal to:
M
fr=>_f

i=1

where (f*,...,fy) € Hk, X ... X Hk,, is the solution of:

_ (M ) M| 113,
min R Zf," —i—)\z —
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Proof (1/4)
_ (’V’ ) M £ 15,
min R ]+ )‘27"
iyt Py i—1 ni

@ R being convex, the problem is strictly convex and has a unique
solution (f*,...,fy) € Hi, X ... X Hk,,
@ By the representer theorem, there exists aj, ..., o}, € R" such that

£ (x) = > ajKi(x),x).
j=1

o (af,...,ay},) is the solution of

M M ol Ka;
min R(ZK;&,—) +)\Z’T".
i=1 i=1 !

ag,...,apER?
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Proof (2/4)

@ This is equivalent to

Y ol K, M
min R(u)+)\2’7" st. u= ZK,-a,-.
i=1

u,aq,...,0p ERN P ni

@ This is equivalent to the saddle point problem:

min max R (u +)\Z +2)\'y u—ZKa, .

u,oq,...,0p ER" y€RN 1
i=

@ By Slater’s condition, strong duality holds, meaning we can invert
min and max:

~YER u,aq,...,ap ER" i

Y oK M
max min R(u)+AZ’7”+2A7T(u—ZK,-a;).
n;

i=1 i=1



Proof (3/4)
@ Minimization in u:
muin R(u) +2\y u= — max {—ZA'yTu — R(u)} = —R*(—2)\v),
where R* is the Fenchel dual of R:

Y eR"” R*(v)= supu'v— R(u).
ucRk”

@ Minimization in ; for i =1,..., M:
TK.a:
min {)\w — 2)\7TK,-a;} = —An;’yTK;'y,
(e 5 i

where the minimum in o is reached for o = 7;.

623 /785



Proof (4/4)

@ The dual problem is therefore

e[ e (Euc)

o Note that if learn from a single kernel K;,, we get the same dual
problem

max {—R*(—Q/\’y) — )\'yTKn'y} .
YER"

o If * is a solution of the dual problem, then a = n;v* leading to:

Vxe X, f(x Za (%, x Zn,vj (xj,x

o Therefore, f* = ZM f* satisfies

7 (x) = 2277/71 (xj,x Z’YJ*Kn (xj,x) . O
j=1

i=1 j=1
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Learning the kernel

Motivation

o If we know how to weight each kernel, then we can learn with the
weighted kernel

M
Ky = Z niK;
i=1

@ However, usually we don't know...

@ Perhaps we can optimize the weights 7; during learning?
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An objective function for K

Theorem
For any p.d. kernel K on X, let

J(K) = min {RCE™) + X £ 1B} -

The function K — J(K) is convex.

This suggests a principled way to "learn” a kernel: define a convex set of
candidate kernels, and minimize J(K) by convex optimization.
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Proof

@ We have shown by strong duality that

K) = —R*(=2)\v) — My 'K~ L
J(K) ;“eﬁgn{ (=2My) =My 7}

o For each « fixed, this is an affine function of K, hence convex

@ A supremum of convex functions is convex. ]
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MKL (Lanckriet et al., 2004)

o We consider the set of convex combinations
M M
Kn:ZT],'K,' with T]EZMZ{T],'ZO,ZU,':].}
i=1 i=1

e We optimize both 1 and f* by solving:

in J(K,;) = min mi {R F7) + Al |2 }
min J(Kn) = min in (F7) + Al 1134,
@ The problem is jointly convex in (7, &) and can be solved efficiently.

@ The output is both a set of weights 77, and a predictor corresponding
to the kernel method trained with kernel Kj,.

o This method is usually called Multiple Kernel Learning (MKL).

628 / 785



Example: protein

annotation

Vol. 20 no. 16 2004, pages 2626-2635
doi:10.1098/bioinformatics/bth294

r 4
=

3

A statistical framework for genomic data fusion

Gert R. G. Lanckriet!, Tijl De Bie3, Nello Cristianini?,
Michael |. Jordan? and William Stafford Noble® *

"Department of Electrical Engineering and Computer Science, 2Division of Computer
Science, Department of Statistics, University of California, Berkeley 94720, USA,
3Depamment of Electrical Engineering, ESAT-SCD, Katholieke Universiteit Leuven 3001,
Belgium, 4Department of Statistics, University of California, Davis 95618, USA and
SDepartment of Genome Sciences, University of Washington, Seattle 98195, USA

Data

protein sequences
protein sequences
protein sequences
hydropathy profile
protein interactions
protein interactions
gene expression
random numbers

1.0
o —
8 0.9
0.8
0.7
B SW Pfam FFT LI D E all
a 40
—F
Similarity measure z30
F20
10
Smith-Waterman 0
BLAST B SW Pfam FFT LI D E all
Pfam HMM o
FFT -g,
linear kernel 205
diffusion kernel =
radial basis kernel 0

linear kernel
(B) Membrane proteins

629 /

785



Example: Image classification (Harchaoui and Bach, 2007)

COREL14 dataset
@ 1400 natural images in 14 classes

e Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination by
MKL (M).

Performance comparison on Corel14

0.12
7, 011 5 -
1“ 1) oal Q
v
0.09 -
. : _
- 5 007 '
,-"‘ F 0.06 E
E v 0.05 -
i M

Kernels

St error

©
;
o TH
H_ T}
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MKL revisited (Bach et al., 2004)
M M
KnZZTHKi with HGZM:{WZO,ZTH:l}
i—1 i=1

Theorem
The solution f* of

in min {R(F") + \|| £ |2 }
nrglanngur;n{ (F7) + Al £ 113,

is £* = S"M £ where (f,...,f%) € Hi, X ... x Hg,, is the solution

of:
M i 2
i 8 (S (Lt ) -
R i=1 i=1
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Proof (1/2)

i min {RE7) +AF By,

o i {n(35) g
= min min
neELy fyesfm - — ;i

in <R %f” + A mi ZM i1
= min ; min
il i=1 I merm (= i

ﬁfT‘.F,'}M{Rﬁ ) +A (ZfHK>2} ,
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Proof (2/2)

where the last equality results from:

M 2 M
M R ai
Va e R}, (Ela,) _nleanM, -,
1= 1=

which is a direct consequence of the Cauchy-Schwarz inequality:

M

M 2 M 32 % M 2
S ydem= (57) ()

i—1 Vi i=1
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Algorithm: simpleMKL (Rakotomamonjy et al., 2008)

o We want to minimize in n € X p:

in J(Ky) = mi {—R*—2/\ ~ MK }
Jmin J(Kn) = min max (=2M7) = Ay Kyy

e For a fixed € Xy, we can compute f(n) = J(Ky;) by using a
standard solver for a single kernel to find ~v*:

J(Kyp) = —R*(—207") — M TK,v*.

@ From ~* we can also compute the gradient of J(Kj,) with respect to

n:
94 (Ky)

on;
e J(Ky) can then be minimized on Xy by a projected gradient or
reduced gradient algorithm.
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Sum kernel vs MKL

@ Learning with the sum kernel (uniform combination) solves

M M
in <R A fill3, ¢ -
flm”}M{ (i—l I ) ' /\/Z; H HHK}

o Learning with MKL (best convex combination) solves

(Zﬁ")ﬂ(ZHm)z

o Although MKL can be thought of as optimizing a convex
combination of kernels, it is more correct to think of it as a
penalized risk minimization estimator with the group lasso penalty:

M
Q)= min > | il
i=1

fitotfu=F £

635 /785



Example: ridge vs LASSO regression
o Take X = RY, and for x = (x1,...,Xxq) " consider the rank-1 kernels:
Vi=1,...,d, K; (x,x/) = x;x} .

e A function f; € H, has the form f; (x) = Bix;, with || f; ”HK,- =0

o The sum kernel is Ks (x,x') = 3%, xix/ = x ' x, a function H is
of the form f (x) = 8'x, with norm || 17k = 1| Bllga-

@ Learning with the sum kernel solves a ridge regression problem:

d
ﬁr‘g}lgd {R(Xﬂ) + A’;ﬁ?} .

@ Learning with MKL solves a LASSO regression problem:

d 2
min, o R(XB) +A <Zl B |)
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Extensions (Micchelli et al., 2005)

M M
For r>0, K=Y niK; with nez;,,:{n,-zo,znle}

i=1 i=1

Theorem
The solution f* of

. o n 2
i min {R(E7) + A1 By,

is f* = ZM f*, where (f*,...,f) € Hk, X ... x Hk,, is the solution

of:
M r+1
o fn f‘ r+1
min. (Z , ) + A <ZH B )
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e Open Problems and Research Topics

o Large-scale learning with kernels
@ Motivation
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Motivation

Main problem

All methods we have seen require computing the n x n Gram matrix,
which is infeasible when n is significantly greater than 100000 both in

terms of memory and computation.

Solutions
@ low-rank approximation of the kernel,

@ random Fourier features.
The goal is to find an approximate embedding ) : X — R? such that

K(x,x') = (1h(x), ¥(x))pa.

and use large-scale optimization techniques dedicated to linear models!

640 /785



Motivation

Then, functions f in H may be approximated by linear ones in RY, e.g.,.

F(x) =) aiK(xi,x) & <Za,~¢(x;),w(X)> =
i1 i=1 RY
Then, the ERM problem
min £ 3™ L F00) + A1,
fen n

1=

becomes, approximately,

n

1 T 2
- L(yi,w ¥(x;)) + A||w]|3,
min 37 Ly w0(x)) + Alw3

=

which we know how to solve when n is large.

(W, (X)) pa-
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Outline

e Open Problems and Research Topics

o Large-scale learning with kernels

@ Interlude: Large-scale learning with linear models
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Interlude: Large-scale learning with linear models

Let us study for a while optimization techniques for minimizing large
sums of functions

1 n
min — fi(w).
WG;Rdniz_; I( )

Good candidates are
@ stochastic optimization techniques;
@ randomized incremental optimization techniques;

We will see a couple of such algorithms with their convergence rates and
start with the (batch) gradient descent method.
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Introduction of a few optimization principles

Why do we care about convexity?
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Introduction of a few optimization principles

Why do we care about convexity?
Local observations give information about the global optimum

\

N

e Vf(w) =0 is a necessary and sufficient optimality condition for
differentiable convex functions;
e it is often easy to upper-bound f(w) — f*.
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Introduction of a few optimization principles

An important inequality for smooth convex functions

If f is convex

\

N

f(w)

o f(w)> f(wo) + Vf(wO)T(w — wO);

linear approximation

@ this is an equivalent definition of convexity for smooth functions.
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Introduction of a few optimization principles

An important inequality for smooth functions

If Vf is L-Lipschitz continuous (f does not need to be convex)
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Introduction of a few optimization principles

An important inequality for smooth functions

If Vf is L-Lipschitz continuous (f does not need to be convex)

o f(w) < g(w) = f(W%) + V(W) " (w — w®) + 5[lw — wj3;

o |lw! =w?— ;VF(wP) (gradient descent step).
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Introduction of a few optimization principles
Gradient Descent Algorithm

Assume that f is convex and differentiable, and that Vf is L-Lipschitz.

Theorem

Consider the algorithm

wi—w

=1 FVF(wth).

Then,
Ll|w® — w3

f t—f*<
(W) —F" =< ot

Remarks

@ the convergence rate improves under additional assumptions on f
(strong convexity);

@ some variants have a O(1/t?) convergence rate (Nesterov, 2004).
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Proof (1/2)
Proof of the main inequality for smooth functions

We want to show that for all w and z,

f(w) < f(z)+ Vf(z)T(w —z)+
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Proof (1/2)
Proof of the main inequality for smooth functions

We want to show that for all w and z,
L
f(w) < f(2) + VF(z) (w—2) + Slw — z .

By using Taylor's theorem with integral form,
f(w) —f(z) = /1 Vi(tw + (1 —t)z) " (w — z)dt.
Then, 0
Fw)—(2) V() (w-z) < | (V(tw+(1-)2)- () (w—2)de
< [ 1(vitow+ -0~ V@) (w-)lat
</ IV F(tw e+ (1 602) - V(@) o w—zladt (C-S)
< /0 Ltlw—z[3dt = = |w—z[.
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Proof (2/2)
Proof of the theorem

We have shown that for all w,
fw) < g(w)=Ff(w )+ VFw ™) (w—w)+ é”w w3
gt is minimized by w'; it can be rewritten gi(w) = ge(w') + 5|lw — w'||5. Then,
Fw) < gi(w') = ge(w’) — 5w — w3
= AW ) VW) (w4 - w R - B
< S lw W S - w

By summing from t =1 to T, we have a telescopic sum

!
T(FwT) ~ £7) < 37 F(w) — 7 < Sw — w3~ Slw’ — w
t=1
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Introduction of a few optimization principles

An important inequality for smooth and p-strongly convex functions

If Vf is L-Lipschitz continuous and f p-strongly convex

f(w)

—_——

‘,\
g
I

°
E/—\
v

F(w) + V(W) T (w —wO) + 5w — w3;
F(w) + VF(W®) " (w — wO) + 5w — w3;

650 /785



Introduction of a few optimization principles

Proposition
When f is u-strongly convex, differentiable and Vf is L-Lipschitz, the

gradient descent algorithm with step-size 1/L produces iterates such that
t 0 _ * (|2

We call that a linear convergence rate.
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Proof

We start from an inequality from the previous proof

Flw) < Fw'™) + VAW )T (W w2 w2 w— w

L— _ L
< =B —w R - Sl — .
In addition, we have that f(w') > f* + £[jw’ — w*||3, and thus

- w3

Iw* —wlfi <
< (1 - Z) w* — w2,
Finally,

t * L t * (12

Fw) = £ < S w' —w
* 0112
< (1 g)f Lljw* — w7j3

- L 2
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The stochastic (sub)gradient descent algorithm

Consider now the minimization of an expectation

min f(w) = Ex[¢(x, w)],

weRP

To simplify, we assume that for all x, w — ¢(x, w) is differentiable, but
everything here is true for nonsmooth functions.

Algorithm
At iteration t,
@ Randomly draw one example x; from the training set;

@ Update the current iterate

wh e wih = Vi l(xe, We1).
@ Perform online averaging of the iterates (optional)

W (1 —y)Wi L 4wt
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The stochastic (sub)gradient descent algorithm

There are various learning rates strategies (constant, varying step-sizes),
and averaging strategies. Depending on the problem assumptions and
choice of ¢, 7t, classical convergence rates may be obtained:

o f(W') — f* = O(1/\/t) for convex problems;
o f(w') — f* = O(1/t) for strongly-convex ones;

Remarks

@ The convergence rates are not that great, but the complexity
per-iteration is small (1 gradient evaluation for minimizing an
empirical risk versus n for the batch algorithm).

@ When the amount of data is infinite, the method minimizes the
expected risk.

@ Choosing a good learning rate automatically is an open problem.
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Randomized incremental algorithms (1/2)

Consider now the minimization of a large finite sum of smooth convex

functions:
min — E fi(w
weRP N

A class of algorithms with low per—iteration complexity have been
recently introduced that enjoy exponential (aka, linear) convergence rates
for strongly-convex problems, e.g., SAG (Schmidt et al., 2016).

SAG algorithm

n
_ . VH(wtt) if =
t owt~l_ L t t_ i t
W W Ln Z;y, with y; yf_l otherwise
1=

See also SAGA (Defazio et al., 2014), SVRG (Xiao and Zhang, 2014),
SDCA (Shalev-Shwartz and Zhang, 2015), MISO (Mairal, 2015);
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Randomized incremental algorithms (2/2)

Many of these techniques are in fact performing SGD-types of steps

t t

—1
W < W — Nt8t,

where E[g:|w;_1] = Vf(w¢_1), but where the estimator of the gradient
has lower variance than in SGD, see SVRG (Xiao and Zhang, 2014).

Typically, these methods have the convergence rate

w0 (- em(31)))

@ their complexity per-iteration is independent of n!

Remarks

@ unlike SGD, they are often almost parameter-free.
@ besides, they can be accelerated (Lin et al., 2015).
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Large-scale learning with linear models

Conclusion
@ we know how to deal with huge-scale linear problems;

@ this is also useful to learn with kernels!
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Outline

e Open Problems and Research Topics

o Large-scale learning with kernels

@ Nystrém approximations
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Nystrom approximations: principle

Consider a p.d. kernel K : X x X — R and RKHS #, with the
mapping ¢ : X — H such that

K(X, X/) = <90(x)7 QO(XI)>7.,5.

The Nystrom method consists of replacing any point ¢(x) in H, for x
in X by its orthogonal projection onto a finite-dimensional subspace

F :=Span(fi,...,f,) with p<n,
where the f;'s are anchor points in H (to be defined later).

Motivation
@ This principle allows us to work explicitly in a finite-dimensional
space; it was introduced several times in the kernel literature [Williams
and Seeger, 2002], [Smola and Schdlkopf, 2000], [Fine and Scheinberg, 2001].
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Nystrom approximations: principle

The orthogonal projection is defined as

Nr[x] == argmin [p(x) — f|f3, ,
feF

o(x) | Hilbert space H
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Nystrom approximations: principle

The projection is equivalent to

p p
Nx[x] := Zﬁff, with  B* € argmin |[¢(x) — Z,ij;- ,
j=1

ﬂe]RP P
Jj=1 U

and 3 is the solution of the problem

p P
min —22@(6’,@(’())% + Z BiBifi, i)y w,
=1

€RpP
p ji=1

or also

p p
Bné%lgp =2 " Bifi(x) + > BiBif, fin-
=

J,I=1
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Nystrom approximations: principle

Then, call [K¢lj; = (f;, i)y and f(x) = [fi(x),..., fp(x)] in RP. The
problem may be rewritten as

min —28"f(x) + B KB,

and, assuming Ky to be non-singular for simplicity, the solution is

B*(x) = K 1f(x). Then,

= > BB, fi)w = B (%) KeB*(X).
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Nystrom approximations: principle

This allows us to define the mapping
¥(x) = K287 (x) = Ky V76 (x),
and we have the approximation K(x,x’) ~ (¢(x), ¥ (x"))re.

Remarks

@ the mapping provides low-rank approximations of the kernel matrix.
Given an n x n Gram matrix K computed on a training set
S ={x1,...,Xn}, we have

K = 4(S) " v(S),
where ¢(5) = [¢(X1)a s 7¢(xn)]'

@ the approximation has a geometric interpretation.
@ We need to define a good strategy for choosing the f;'s.
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Nystrom approximation via kernel PCA

Let us now try to learn the f;'s given training data xg,...,x, in A
2
n p
min Xj) — ifi
fi... ,fpeHZ o) Zﬁ” !
BUGR i=1 _j:]. H

Using similar calculation as before, the objective is equivalent to

n

i —281f(x; TK:3
flnTTIC:E'HZ B’ (X,) + ’61 fﬁn
B;ERP i=1

and, by minimizing with respect to all 3; with f fixed, we have that
B; = K; 1f(x;) (assuming Ky to be invertible), which leads to

max Zf ) TK(x)).

i fp€H 4
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Nystrom approximation via kernel PCA

Remember the objective:

max Zf ) K (x;).

f17"'7fPEH

Consider an optimal solution f* and compute the eigenvalue
decomposition of K¢« = UAUT. Then, define the functions

g (x) == g1 (x),..., g5 (x)] = AT2UTF(x).
The functions gj* are points in the RKHS H since they are linear
combinations of the functions zj-* in H.
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Nystrom approximation via kernel PCA

Remember the objective:
max f(x;) K1 (x
ﬁ,...,f,,eHZ (<)

Consider an optimal solution f* and compute the eigenvalue
decomposition of K¢« = UAUT. Then, define the functions

g (x) == g1 (x),..., g5 (x)] = AT2UTF(x).
The functions gj* are points in the RKHS H since they are linear
combinations of the functions 15-* in H.

Exercise: check that all we do here and in the next slides can be
extended to deal with singular Gram matrices K¢« and Ks.
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Nystrom approximation via kernel PCA

Besides, by construction

[Ke:1ir := (&', 87 )%
P

1
= 2 MU, —7= ) U] f*>
A Z kiTk ; klTk N

llk_

T

[y

r\ﬁ Z (Ul [Ulks (£ fi )
4 k,k'=1
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Nystrom approximation via kernel PCA

Then, Kg+ = | and g* is also a solution of the problem

max Zf ) TKE(x)),

fire fp€H 4
since
f*(x,-)TKf_*lf*(x-) = f*(x;)TUAflqu*(x;)
=g"(x) g (xi) = g"(x/) 'K 'g*(xi),

and also a solution of the problem

max Z:Z:gj(x,-)2 st. g Lge for k#j and |gjlly =1
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Nystrom approximation via kernel PCA

Then, Kg+ = | and g* is also a solution of the problem

max Zf ) TKE(x)),

fire fp€H 4
since
f*(x,-)TKf_*lf*(x-) = f*(x,-)TUAflqu*(x,-)
=g"(x) g (xi) = g"(x/) 'K 'g*(xi),

and also a solution of the problem

max ZZgJ )? st g Lgk for k#j and |gln =1

s 8pEH
8Lo-8p j=1i=1

This is the kernel PCA formulation!
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Nystrom approximation via kernel PCA

Our first recipe with kernel PCA

Given a dataset of n training points x1,...,X, in X,
e randomly choose a subset Z = [Xz,...,Xz,| of m < n training
points;

@ compute the m x m kernel matrix Kz.

o perform kernel PCA to find the p < m largest principal directions
(parametrized by p vectors a; in R™);

Then, every point x in X may be approximated by

Y(x) = K 2g"(x) = g"(x) = [g5(%),....g5(x)]”

T
E 0411 XZ, E apl Xz,
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Nystrom approximation via kernel PCA

Remarks

@ The vector 1)(x) can be interpreted as coordinates of the projection
of ¢(x) onto the (orthogonal) PCA basis.

e The complexity of training is O(m?) (eig decomposition of Kz) +
O(m?) kernel evaluations.

@ The complexity of encoding a new point x is O(mp) (matrix vector
multiplication) + O(m) kernel evaluations.
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Nystrom approximation via kernel PCA

Remarks

@ The vector 1)(x) can be interpreted as coordinates of the projection
of ¢(x) onto the (orthogonal) PCA basis.

e The complexity of training is O(m?) (eig decomposition of Kz) +
O(m?) kernel evaluations.

@ The complexity of encoding a new point x is O(mp) (matrix vector
multiplication) + O(m) kernel evaluations.

The main issue is the encoding time, which depends linearly on m > p.
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Nystrom approximation via random sampling

A popular alternative is instead to select the anchor points among the
training data points Xy, ..., X,—that is,

F = span(p(Xz), - - -, ¢(2z,))-
In other words, choose f; = ¢(xz), ..., fp = ¥(xz,).

Second recipe with random point sampling

Given a dataset of n training points x1,...,X, in X,
@ randomly choose a subset Z = [x,,...,Xz,] of p training points;
@ compute the p x p kernel matrix Kz.

Then, a new point x is encoded as

(%) = K3z (x)
= K§1/2[K(XZI,X), ey K(xzp7 x)]T
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Nystrom approximation via random sampling

o The complexity of training is O(p?) (eig decomposition) + O(p?)
kernel evaluations.

o The complexity of encoding a point x is O(p?) (matrix vector
multiplication) + O(p) kernel evaluations.
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Nystrom approximation via random sampling

e The complexity of training is O(p®) (eig decomposition) + O(p?)
kernel evaluations.

o The complexity of encoding a point x is O(p?) (matrix vector
multiplication) + O(p) kernel evaluations.

The main issue complexity is better, but we lose the “optimality” of the
PCA basis and the random choice of anchor points is not clever.
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Nystrom approximation via greedy approach

Better approximation can be obtained with a greedy algorithm that
iteratively selects one column at a time with largest residual (Bach and
Jordan, 2002; Smola and Shélkopf, 2000, Fine and Scheinbert, 2000).

At iteration k, assume that Z = {x,,,...,X;, }; then, the residual for a
data point x encoded with k anchor points fi,..., f is

min ||o(x Zﬁmxzj :

BERK
H

which is equal to

()3 — F2(x) TK 2 (x),
and since f; = ¢(x;;) for all j, the data point x; with largest residual is
the one that maximizes

K(xi,x;) — fg(x,-)K;fg(x,-) with fz(x;) = [K(Xz,X), ..., K(Xz,, x)]T.
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Nystrom approximation via greedy approach
This brings us to the following algorithm

Third recipe with greedy anchor point selection
Initialize Z =0. For k=1,...,p do
o data point selection

Z) <— argmax K(X,‘,X,’) = fz(X,’)Kglfz(X,’);
i€{1,...,n}

o update the set Z
Z— ZU{xy}.

Remarks
@ A naive implementation costs (O(k%n + k3) at every iteration.

@ To get a reasonable complexity, one has to use simple linear algebra
tricks (see next slide).
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Nystrom approximation via greedy approach
If 2/ = ZU{z},

K_l _ Kz fg(z) -t _ K%l + lbb—l— —
z fz(z)" K(z,2)

where s is the Schur complement s = K(z,z) — fz(z)K3'fz(z), and
b =K;'fz(z).
Complexity analysis
° K;,l can be obtained from Kgl and fz(z) in O(k?) float operations;
for that we need to always keep into memory the n vectors fz(x;).
@ updating the fz/(x;)'s from fz(x;) requires n kernel evaluations;

The total training complexity is O(p®n) float operations and O(pn)
kernel evaluations
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Nystrom approximation via K-means

When X = RY, it is also possible to synthesize points zj, . .. ,Zp such
that they represented well some training data xi,...,X,, leading to the
Clustred Nystrom approximation (Zhang and Kwok, 2008).

Fourth recipe with K-means

@ Perform the regular K-means algorithm on the training data, to
obtain p centroids z1,...,z, in RP.

@ Define the anchor points f; = (z;) for j =1,..., p, and perform
the classical Nystrom approximation.
Remarks

@ The complexity is the same as Nystrom with random selection
(except for the K-means step);

@ The method is data-dependent and can significantly outperform the
other variants in practice.
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Nystrom approximation: conclusion

Concluding remarks

@ The greedy selection rule is equivalent to computing an incomplete
Cholesky factorization of the kernel matrix (Bach and Jordan, 2002;
Scholképf and Smola, 2000, Fine and Scheinberg, 2001);

@ The techniques we have seen produce low-rank approximations of
the kernel matrix K ~ LLT:

@ The method admits a geometric interpretation in terms of
orthogonal projection onto a finite-dimensional subspace.

@ The approximation provides points in the RKHS. As such, many
operations on the mapping are valid (translations, linear
combinations, projections), unlike the method that will come next.
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Outline

e Open Problems and Research Topics

o Large-scale learning with kernels

@ Random Fourier features
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Random Fourier features [Rahimi and Recht, 2007] (1/5)

A large class of approximations for shift-invariant kernels are based on
sampling techniques. Consider a real-valued positive-definite continuous
translation-invariant kernel K(x,y) = x(x —y) with s : R? — R. Then,
if £(0) = 1, Bochner theorem tells us that & is a valid characteristic
function for some probability measure

K(z) = Ew[e™ 7.
Remember indeed that, with the right assumptions on &,

1 ~ iwTx _—iwT
k(x—y)= 2n) /Rd R(w)e™ e Ydw,

and the probability measure admits a density g(w) = m—z/4(w)
(non-negative, real-valued, sum to 1 since x(0) = 1).
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Random Fourier features (2/5)
Then,

]. A I'T _I'T
/ﬁ(x—y)—(ZTr)d/Rdn(w)ew Xem™ Ydw

= /]Rd g(w) cos(w'x —w'y)dw
— / q(w) (cos(wa) cos(w'y) + sin(w ' x) sin(wTy)) dw

Lk

= EWNq(W)7b~u[O72ﬂ] [\@ cos(w ' x + b)v2 cos(w 'y + b)}

2cos (w'x + b)cos(w 'y + b)dwdb (exercise)
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Random Fourier features (3/5)

Random Fourier features recipe

o Compute the Fourier transform of the kernel % and define the
probability density g(w) = A(w)/(27);

@ Draw p i.i.d. samples wy,...,w, from g and p i.i.d. samples
b1, ..., b, from the uniform distribution on [0, 27];

@ define the mapping

T

2
X = (x) = \/; [cos(wlTx + b1),. .. ,cos(w;x + bp)

Then, we have that

r(x —y) = (¥(x), Y(y))re-

The two quantities are equal in expectation.
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Random Fourier features (4/5)

Theorem, [Rahimi and Recht, 2007]
On any compact subset X’ of R™, for all € > 0,

pe?

. 2
P | sup |w(x —y) — ((x), ¥(y))e] 25] <28 (oqdla:()\,’)) ¢ Hnrd)

x,yeX

where crf, = Ew~g(w) [w'w] is the second moment of the Fourier
transform of .

Remarks
@ The convergence is uniform, not data dependent;

@ Take the sequence ¢, = @aqdiam(ﬁf); Then the term on the
right converges to zero when p grows to infinity;

@ Prediction functions with Random Fourier features are not in .
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Random Fourier features (5/5)

Ingredients of the proof
@ For a fixed pair of points x,y, Hoeffding's inequality says that

2

P[|r(x — y) — ((x), %(y))ge| > €] < 2¢7 .

f(xy)

o Consider a net (set of balls of radius r) that covers

Xa ={x—y:(x,y) € X} with at most T = (4diam(X’)/r)™ balls.
@ Apply the Hoeffding's inequality to the centers x; — y; of the balls;
@ Use a basic union bound

2

[supf(x,,y, > } ZP[ Xi, ¥7) g <2Te %,

@ Glue things together: control the probability for points (x,y) inside
each ball, and adjust the radius r (a bit technical).
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Qutline

© Kernels and RKHS

© Kernel tricks

© Kernel Methods: Supervised Learning
@ Kernel Methods: Unsupervised Learning
© The Kernel Jungle

@ Characterizing probabilities with kernels

e Open Problems and Research Topics

o Foiindatione of deen learnine from a kernel noint of view
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Outline

e Open Problems and Research Topics

o Foundations of deep learning from a kernel point of view
@ Motivation
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Understanding deep learning

The challenge of deep learning theory
e Over-parameterized (millions of parameters)
e Expressive (can approximate any function)
o Complex architectures for exploiting problem structure
o Yet, easy to optimize with (stochastic) gradient descent!
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Understanding deep learning

The challenge of deep learning theory
e Over-parameterized (millions of parameters)
e Expressive (can approximate any function)
o Complex architectures for exploiting problem structure
o Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint
o View deep networks as functions in some functional space;

o Non-parametric models, natural measures of complexity (e.g.,

norms).
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Understanding deep learning
The challenge of deep learning theory
e Over-parameterized (millions of parameters)
e Expressive (can approximate any function)
o Complex architectures for exploiting problem structure
o Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint
o View deep networks as functions in some functional space;

o Non-parametric models, natural measures of complexity (e.g.,

norms).

What is an appropriate functional space?
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Success of deep learning

What can | help
you with?

ENGLISH - DETECTED ENGLISH C v g FRENCH CHINESE (TRADITIONAL) v
where is the train station? X ol est la gare? © w
ED) 27/5000 D) lg
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In the context of supervised learning

The goal is to learn a prediction function f : X — ) given labeled
training data (x;, yi)i=1,...» With x; in X, and y; in ):
1 n
min fZL(y,-,f(x,-)) +  AQ(f)

feF n — ——
= regularization

empirical risk, data fit

What is specific to multilayer neural networks?
@ The “neural network” space F is explicitly parametrized by:

f(X) = Uk(AkUk—l(Ak—l ce (72(A20’1(A1X)) . ))

@ Linear operations are either unconstrained (fully connected) or
involve parameter sharing (e.g., convolutions).

@ Finding the optimal A1, A, ..., Ak yields a non-convex
optimization problem.
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Convolutional Neural Networks

Picture from LeCun et al. (1998)

C3: 1. maps 16@10x10
INEUT %ggr&nge maps 54: 1. maps 16@5x5

S2:f. maps C5:layer g n OUTFUT
l'l_ 120 PR T

sarlfE
T

|
| Full connectian Gaussian connections

Full

Canvelutions Subsampling Canvolutians

What are the main features of CNNs?
@ they capture compositional and multiscale structures in images;
o they provide some invariance;

@ they model the local stationarity of images at several scales;
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Convolutional Neural Networks

(Simonyan and Zisserman, 2014)

224x224x3
224x224%64

112x112x128

56x56x256

28x28x512 14x14x512  7x7x512

1x1x4096 1x1x4096 1x1x1000 1x1x1000

7

CIC

What are the main features of CNNs?
@ they capture compositional and multiscale structures in images;
o they provide some invariance;

@ they model the local stationarity of images at several scales;
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CNNs (Picture from unknown source)

ImageNet: 1000 image categories, 10M hand-labeled images; top-5 error

rate.

152 layers

l 22 layers |

28.2
25.8

\ 6.7
3.57

ILSVRC'15
ResNet

ILSVRC'14
GoogleNet

16.4
11.7
19 Iavers
B ayer
ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
VGG AlexNet

Figure: Top-b error rate
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Convolutional neural networks for biological sequences

Current batch Motif scans Features
of inputs

C!
T
T.
C

2
X
=CACCTC SACC
'CGGGGCCCTGCAT
TACAAATGAGCACAA]

Motif

detectors Thresholds Weights

Current model
parameters

> - —
L H H 4

Figure: two-layer CNN architecture from Alipanahi et al. (2015)

@ Sequences are represented by one-hot encoding
(A=(1,0,0,0),C=(0,1,0,0),...).
@ Single convolution layer followed by linear classifier.

e ey o §

O(/ %
%
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Convolutional Neural Networks

What are current important problems to solve?
@ lack of stability and robustness (see next slide).
@ learning without large amounts of data.
© making interpretable decisions.

[ I
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Adversarial examples, Picture from Kurakin et al. (2016)

(a) Image from dataset (b) Clean image (c) Adv. image, e = 4 (d) Adv. image, e = 8

Figure: Adversarial examples are generated by computer; then printed on paper;
a new picture taken on a smartphone fools the classifier.
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Adversarial examples

clean + noise — “ostrich” (Szegedy et al., 2013).
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Adversarial examples

(a real ostrich)
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Adversarial examples

adversarial
perturbation

88% tabby cat 99% guacamole

https://github.com/anishathalye/obfuscated-gradients
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https://github.com/anishathalye/obfuscated-gradients

Convolutional Neural Networks

min =S Ly f(x) + AQ(F)

feF n*“ ~——

1=

regularization

empirical risk, data fit

The issue of regularization
@ today, heuristics are used (DropOut, weight decay, early stopping)...
@ ...but they are not sufficient.

@ how to control variations of prediction functions?
|f(x) — f(x")| should be close if x and x" are “similar”.
@ what does it mean for x and x’ to be “similar”?

@ what should be a good regularization function Q7?
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Outline

e Open Problems and Research Topics

@ Foundations of deep learning from a kernel point of view

@ Deep kernel machines
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Relevant concepts

@ Dot-product kernels:

/ T/ / / x X!
Kleo) = n(7) oK) = Il s (2505 )

o Hierarchical composition of feature spaces:
K(x,x') = (®(x), d(x)) with ®(x) = ©2(1(x))

o NTK: Asymptotic behavior of over-parametrized deep neural
networks learned by gradient descent.

@ CKN: Convolutional and hierarchical kernel constructions +
end-to-end learning with kernels.
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Relevant concepts

@ Dot-product kernels:

/ T/ / / x X!
Kleo) = n(7) oK) = Il s (2505 )

o Hierarchical composition of feature spaces:
K(x,x') = (®(x), d(x)) with ®(x) = ©2(1(x))

o NTK: Asymptotic behavior of over-parametrized deep neural
networks learned by gradient descent.

@ CKN: Convolutional and hierarchical kernel constructions +
end-to-end learning with kernels.

What does it mean to do end-to-end learning with kernels?

698 / 785



Kernels for deep models: deep kernel machines
Hierarchical kernels (Cho and Saul, 2009b)

@ Kernels can be constructed hierarchically
K(x,x") = (®(x), ®(x)) with ®(x) = ©2(¢1(x))

@ e.g., dot-product kernels on the sphere

K(x,x') = ra({01(x), 01(x"))) = ra(r1(x X))
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Kernels for deep models: deep kernel machines

Hierarchical kernels (Cho and Saul, 2009b)

@ Kernels can be constructed hierarchically

K(x, x") = (0(x), ®(x)) with ®(x) = pa(p1(x))

@ e.g., dot-product kernels on the sphere

K(x,x') = ra({01(x), 01(x"))) = ra(r1(x X))

A classical old result (Schoenberg, 1942)
Let X =S be the unit sphere of some Hilbert space Hg. The kernel
K:Xx2 >R

K(x’ y) = /<L(<X, Y>'H0)7
is positive definite for all Hg if and only if s is smooth and admits an
expansion k(u) = ) aju’ with non-negative coefficients a;.
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Kernels for deep models: dot-product kernels

linear kernel (z,7')

. N
exponential kernel eo((z,2')-1)
. . 1
inverse polynomial kernel T

polynomial kernel of degree p

(c+(z,2))P

arc-cosine kernel of degree 1

L (sin() + (m — 0) cos(9))

™

with 6 = arccos((z, Z’))

Vovk's kernel of degree 3

% (11—7<<zz,’zz’/>>3> _ % (1 V(z,7) + <z,z’>2)
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Kernels for deep models: dot-product kernels

linear kernel (z,7')

. N
exponential kernel eo((z,2')-1)
. . 1
inverse polynomial kernel T

polynomial kernel of degree p

(c+(z,2))P

arc-cosine kernel of degree 1

L (sin() + (m — 0) cos(9))

™

with 6 = arccos((z, Z’))

Vovk's kernel of degree 3

% (11—7<<zz,’zz’/>>3> _ % (1 V(z,7) + <z,z’>2)

Remark

if ||z|]] = ||2’|| = 1, the exponential kernel recovers the Gaussian kernel

rexp((2,2)) = &

z,2)-1) —%IIZ—Z’HZ,

=€
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Kernels for deep models: random feature kernels

1
fo(x) = —= Y vio(w; x), m — 0o

i=1
Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
o 6 = (v;);, fixed random weights w; ~ N(O, /)

3

—~

Krr(x,y) = Ewngonlo(w' x)o(w'y)]
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Kernels for deep models: random feature kernels

fo(x) = \;-»ZV,'O'(W,-TX), m — 00
=1

1=

RF, Neal, 1996; Rahimi and Recht, 2007)
e 6§ = (v;);, fixed random weights w; ~ N(O, /)

3

Random feature kernels

—~~

Kre(x,y) = Ewngnlo(w' x)o(w'y)]

@ integral representations are not only available for t.i. kernels. They
also work for several dot-product kernels (Cho and Saul, 2009b):

1 XTy
kn(x,y) = =|x||"ly]|"J.(0) with 9:cos_1< >
(O, y) = —lxIPly 1" Jn(6) Tyl

with
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Kernels for deep models: random feature kernels

1
fo(x) = —Zv,-a(w,-—rx), m — 0o
vm

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
e 6 = (v;);, fixed random weights w; ~ N(O, /)

Kre(x,y) = Ewno,nlo(w'x)o(wy)]

@ integral representations are not only available for t.i. kernels. They
also work for several dot-product kernels (Cho and Saul, 2009b):

1 xTy
kn(x,y) = =||x||"lyl|"J.(0) with H—COS_I( )
O, y) = —lxIPly 117 Jn(6) TSI

with

b)) =7—0
{ J1(0) =sin(0) + (7 — 6) cos(6)
J(0) = 3sin(#) cos(d) + (7 — 0)(1 + 2 cos?())
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Kernels for deep models: random feature kernels

Theorem, (Cho and Saul, 2009a)

Consider

1 xTy
kn(x,¥) = =IxI"Ily " J,(0)  with 9:cos_1< )

Then
kn(x,¥) = Eponionlo(w x)a(w'y)],

with o(u) = %(1 + sign(u)).

e Note that ki(x,y) = EWNN(OJ)[RELU(WTX)RELU(WT)/)].

@ One of the fundamental tool to analyze RELU networks.
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Kernels for deep models: neural tangent kernels

1 m
fo(x) = ﬁZv,-a(w,-Tx), m — 0o
i=1

Neural tangent kernels (NTK, Jacot et al., 2018)
e 6 = (vj, w;);, initialization 6y ~ N(O, /)
e Lazy training (Chizat et al., 2019): 6 stays close to 6y when
training with large m

fo(x) & fay(x) + (6 — bo, Viafa(x)lo=6,)-

o Gradient descent for m — oo =~ kernel ridge regression with neural
tangent kernel
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Kernels for deep models: neural tangent kernels

1 m
fo(x) = ﬁZv,-a(w,-Tx), m — 0o
i=1

Neural tangent kernels (NTK, Jacot et al., 2018)
e 6 = (vj, w;);, initialization 6y ~ N(O, /)
e Lazy training (Chizat et al., 2019): 6 stays close to 6y when
training with large m

fo(x) & fay(x) + (6 — bo, Viafa(x)lo=6,)-

o Gradient descent for m — oo =~ kernel ridge regression with neural
tangent kernel

Knt (x,y) (Vofo(x): Vot (v))

= |im
m—o0
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Kernels for deep models: neural tangent kernels

1 m
fo(x) = ﬁZv,-a(w,-Tx), m — 0o
i=1

Neural tangent kernels (NTK, Jacot et al., 2018)
e 6 = (vj, w;);, initialization 6y ~ N(O, )
e Lazy training (Chizat et al., 2019): 6 stays close to 6y when
training with large m

fo(x) = foo (x) + (6 — b0, Vo o(x)[o=po)-

@ Gradient descent for m — oo =~ kernel ridge regression with neural
tangent kernel

Ktk (x,y) = Ew[o(wx)a(w'y) + (x"y)o'(wx)o'(w'y)]

@ with RELU networks, we obtain a dot-product kernel.
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Kernels for deep models: dot-product kernels + Nystrom

The Nystrom method consists of replacing any point ¢(x) in H, for x

in X by its orthogonal projection onto a finite-dimensional subspace
JF= Span(so(zl)’ R QP(ZP))7

for some anchor points Z = [z1,...,2,] in R9*P

A

Hilbert space H
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Kernels for deep models: dot-product kernels + Nystrom
The projection is equivalent to
2
p p
Mo =3 Bel) with B € argmin ||o(x) = Gielz)| -
j=1 € j=1 ”

Then, it is possible to show that with K(x,y) = x((x,y)),

K(x,y) = (Mz[x], NelyDhr = @(x), (y))re,

with
D(x) = K(Z7Z)M?R(ZTx),
where the function k is applied pointwise to its arguments. The resulting

1 can be interpreted as a neural network performing (i) linear operation,
(ii) pointwise non-linearity, (iii) linear operation.

(Williams and Seeger, 2001; Smola and Schélkopf, 2000; Fine and Scheinberg, 2001).
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Kernels for deep models: end-to-end learning

Nystrom's encoding with a dot-product kernel provides the encoding
Yz(x) = K(Z72)"Y2k(Z" x).

The anchor points Z can be learned in various manners
o unsupervised learning: use K-means!

o supervised learning: use back-propagation

R T 2
QIQH;L(%,W Yz(xi)) + Alwl|*.
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Kernels for deep models: end-to-end learning

Nystrom's encoding with a dot-product kernel provides the encoding
Yz(x) = K(Z72)"Y2k(Z" x).

The anchor points Z can be learned in various manners
o unsupervised learning: use K-means!

@ supervised learning: use back-propagation
min 23 Ly wTz(x) + Alw?
wZ n £ iy i .

end-to-end learning with kernels may mean learning a parametrized linear
subspace of the RKHS, where we project the data.
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Kernels for deep models: Convolutional Kernel Networks

What is the relation?

@ it is possible to design functional spaces H where deep neural
networks live (Mairal, 2016).

f(X) = O'k(AkO'k_]_(Ak_]_ PN 0’2(A201(A1X)) .. )) = <f, ¢(X)>'H

@ we call the construction “convolutional kernel networks" .
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Kernels for deep models: Convolutional Kernel Networks

What is the relation?

@ it is possible to design functional spaces H where deep neural
networks live (Mairal, 2016).

f(X) = O’k(AkO'k_]_(Ak_]_ ce 0’2(A201(A1X)) ‘e )) = <f, ¢(X)>'H
@ we call the construction “convolutional kernel networks" .

Simple story about CKNs (Mairal, 2016)
o for the theory part, replace x — o(Ax) at each CNN layer by a
kernel mapping x — ¢(x) associated to a dot-product kernel.

o for the practical part, replace x — o(Ax) by Nystrom's embedding
x — k(ZTZ)"Y2K(Z7x). Then, you can either use K-means to
learn the anchor points (unsupervised learning), or use
back-propagation (supervised learning).
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Kernels for deep models: Convolutional Kernel Networks

What is the relation?

@ it is possible to design functional spaces H where deep neural
networks live (Mairal, 2016).

f(X) = O'k(AkO'k_]_(Ak_]_ ce 0’2(A201(A1X)) ‘e )) = <f, ¢(X)>'H
@ we call the construction “convolutional kernel networks" .

Why do we care?

@ ®(x) is related to the network architecture and is independent of
training data. Is it stable? Does it lose signal information?

o f is a predictive model. Can we control its stability?

F(x) = FOD < Il D(x) = D<) 12

707 /785



Construction of the RKHS for continuous signals

Initial map xp in L2(Q, Ho)
xo : Q — Ho: continuous signal, with Q = R9 (d = 2 for images).
o xo(u) € Ho: input value at location u  (Ho = R> for RGB images).
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Construction of the RKHS for continuous signals

Initial map xo in L?(9, Ho)
xo : Q — Ho: continuous signal, with Q = R9 (d = 2 for images).
e xo(u) € Ho: input value at location v (Ho = R3 for RGB images).

Building map x in L2(Q, Hy) from x,_1 in L2(, Hy_1)

Xk : Q — Hy: feature map at layer k

Prxy—1.

@ Pj: patch extraction operator, extract small patch of feature map
Xk—1 around each point u (Pgxx—1(u) is a patch centered at u).
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Construction of the RKHS for continuous signals

Initial map xo in L?(9, Ho)
xo : Q — Ho: continuous signal, with Q = R9 (d = 2 for images).
e xo(u) € Ho: input value at location v (Ho = R3 for RGB images).

Building map x in L2(Q, Hy) from x,_1 in L2(, Hy_1)
Xk : Q — Hy: feature map at layer k

M Pxp_1.

@ Pj: patch extraction operator, extract small patch of feature map
Xk—1 around each point u (Pgxx—1(u) is a patch centered at u).

@ My: non-linear mapping operator, maps each patch to a new
Hilbert space Hy with a pointwise non-linear function ¢(+).
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Construction of the RKHS for continuous signals

Initial map xo in L?(9, Ho)
xo : Q — Ho: continuous signal, with Q = R9 (d = 2 for images).
e xo(u) € Ho: input value at location v (Ho = R3 for RGB images).

Building map x in L2(Q, Hy) from x,_1 in L2(, Hy_1)

Xk : Q — Hy: feature map at layer k

xx = AkM Pixi_1.

@ Pj: patch extraction operator, extract small patch of feature map
Xk—1 around each point u (Pgxx—1(u) is a patch centered at u).

@ My: non-linear mapping operator, maps each patch to a new
Hilbert space Hy with a pointwise non-linear function ¢(+).

@ Ag: (linear) pooling operator at scale o.
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Construction of the RKHS for continuous signals

g Q — Hy xp(w) € Hy
linear pooling

Tpo.5 0 — Hy Tk-0.5(0) = or(Prar-1(v)) € Hy

kernel mapping

Pyay1(v) € Py (patch extraction)

rp1(u) € Hi Tp1:Q— Hi
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Construction of the RKHS for continuous signals

Kernel mapping for patches
@ We use a homogeneous dot-product kernel for image patches

K(z2.2) = ||| (n<un>n> |

Multilayer representation
®p(x) = AsMuPrAn_1My_1Pp_y - AIMiP1xy € L2(Q,H,).

@ oy grows exponentially in practice (i.e., fixed with subsampling).
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Construction of the RKHS for continuous signals

Kernel mapping for patches
@ We use a homogeneous dot-product kernel for image patches

K(z2.2) = ||| (n<un>n> |

Multilayer representation
®p(x) = AsMuPrAn_1My_1Pp_y - AIMiP1xy € L2(Q,H,).

@ oy grows exponentially in practice (i.e., fixed with subsampling).

Prediction layer
e e.g., linear f(x) = (w, ®,(x)).

o “linear kernel” K(x,x") = (®n(x), Pn(x)) = [q(xn(u), x}(u))du.
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Convolutional Kernel Networks in practice

linear pooling

’l,“/’l (Z)

/ | ] Vi
: ection on Fi o

©1(2) Hilbert space H1

Learning mechanism of CKNs between layers 0 and 1.
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Convolutional Kernel Networks in Practice

What is the difference with a CNN?
o Given a patch x, a CNN computes ¥ cyn(x) = o(Z"x).
o whereas a CKN computes ¥cxn(x) = [|x]|5(ZTZ)"Y21(Zx/||x|).
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Convolutional Kernel Networks in Practice

What is the difference with a CNN?
o Given a patch x, a CNN computes ¥ cyn(x) = o(Z"x).
o whereas a CKN computes ¥cxn(x) = [|x]|5(ZTZ)"Y21(Zx/||x|).

Consequences
@ we have a geometric interpretation in terms of subspace learning.
@ it provides unsupervised learning mechanisms (Nystrém).
@ supervised learning is feasible.
@ the kernel interpretation provides regularization mechanisms.

@ kernel representations can possibly be used in other contexts
(statistical testing? kernel PCA? CCA? K-means?).
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Experiments

o Briefly state-of-the-art for image retrieval (Paulin et al., 2015);
o Briefly state-of-the-art for image super-resolution (Mairal, 2016);

Interesting findings from CIFAR-10

@ about 92% with supervision, mild data augmentation, 14 layers, 256
anchor points per layers (no need for batch norm, vanilla
SGD+momentum).

@ about 86% with no supervision for a two-layer model with a huge
number of anchor points (1024-16384) and no data augmentation.

@ with no supervision, the performance monotonically increases
with the dimension (better kernel approximation).

@ computing the exact kernel does not make sense in practice for
computational reasons, but it is feasible with lots of CPUs; it yields
about 90% with three layers (unpublished, by A. Bietti), which is
consistent with (Shankar et al., 2020).
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Other relations between kernels and deep learning

hierarchical kernel descriptors (Bo et al., 2011);

other multilayer models (Bouvrie et al., 2009; Montavon et al.,
2011; Anselmi et al., 2015);

deep Gaussian processes (Damianou and Lawrence, 2013).
multilayer PCA (Scholkopf et al., 1998).

old kernels for images (Scholkopf, 1997), related to one-layer CKN.
RBF networks (Broomhead and Lowe, 1988).
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Outline

0 Open Problems and Research Topics

@ Foundations of deep learning from a kernel point of view

@ Deep learning and stability
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Focus on convolutional kernel networks (CKNs)

What is the relation?

@ it is possible to design functional spaces H for deep neural
networks (Mairal, 2016).

f(X) = O'k(AkO'k_]_(Ak_]_ PN 0’2(A201(A1X)) .. )) = <f, ¢(X)>'H

o we call the construction “convolutional kernel networks" (in
short, replace u+ o({a, u)) by a kernel mapping u — i (u).

Why do we care?

@ ®(x) is related to the network architecture and is independent of
training data. Is it stable? Does it lose signal information?
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Focus on convolutional kernel networks (CKNs)

What is the relation?

@ it is possible to design functional spaces H for deep neural
networks (Mairal, 2016).

f(X) = O'k(AkO'k_]_(Ak_]_ PN 0’2(A201(A1X)) .. )) = <f, ¢(X)>'H

e we call the construction “convolutional kernel networks” (in
short, replace u+ o({a, u)) by a kernel mapping u — i (u).

Why do we care?

@ ®(x) is related to the network architecture and is independent of
training data. Is it stable? Does it lose signal information?

e f is a predictive model. Can we control its stability?
[F(x) = £ < (1[Il (x) — ()[4
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Summary of the results from Bietti and Mairal (2019a)

Multi-layer construction of the RKHS H
@ Contains CNNs with smooth homogeneous activations functions.
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Summary of the results from Bietti and Mairal (2019a)

Multi-layer construction of the RKHS H

@ Contains CNNs with smooth homogeneous activations functions.

Signal representation: Conditions for
e Signal preservation of the multi-layer kernel mapping ®.
o Stability to deformations and non-expansiveness for ¢.

o Constructions to achieve group invariance.
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Summary of the results from Bietti and Mairal (2019a)

Multi-layer construction of the RKHS H

@ Contains CNNs with smooth homogeneous activations functions.

Signal representation: Conditions for
e Signal preservation of the multi-layer kernel mapping ®.
o Stability to deformations and non-expansiveness for ¢.

o Constructions to achieve group invariance.

On learning

@ Bounds on the RKHS norm ||.|| to control stability and
generalization of a predictive model f.

[F(x) = F < N Fllall D) = () -
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Smooth homogeneous activations functions

T T
z+— RelLU(w ' z) = z—||z|lo(w' z/||z]]).
Fixmo(x) f:x e |x|o(wx/|x]|)
2.0 RelU 41 — Relu, w=1
sRelU —— sRelU,w=0
1.54 34{ — sRelU,w=0.5
) —— sRelU,w=1
~ | — sRelu,w=2
Z10 Z2
0.5 14
0.0 1 0
-2.0 -15 -1.0 =05 0.0 05 1.0 15 2.0 -20 -15 -1.0 =05 0.0 05 1.0 15 20
X X
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Stability to deformations
Deformations

o 7:Q — Q: Cl-diffeomorphism
o L. x(u) = x(u—7(u)): action operator

@ Much richer group of transformations than translations

R R N
55555555 6¢
7277172717777
39551 8C8 &

o Studied for wavelet-based scattering transform (Mallat, 2012; Bruna
and Mallat, 2013)
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Stability to deformations
Deformations
o 7:Q — Q: Cl-diffeomorphism
o L. x(u) = x(u—7(u)): action operator

@ Much richer group of transformations than translations

Definition of stability
@ Representation ®(-) is stable (Mallat, 2012) if:

|8(Lrx) = *()]| < (GlIVT oo + Cal7[loo) ]

0 ||VT| oo =sup, ||V (u)|| controls deformation
@ ||7]|coc = sup, |7(u)| controls translation

@ (> — 0: translation invariance
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Smoothness and stability with kernels

Geometry of the kernel mapping: f(x) = (f, ®(x))

) = FO < 1 llae - [190x) = (X

@ ||f||% controls complexity of the model

@ ®(x) encodes CNN architecture independently of the model
(smoothness, invariance, stability to deformations)
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Smoothness and stability with kernels

Geometry of the kernel mapping: f(x) = (f, ®(x))

[F(x) = £ < N Fllae - [190x) = D)

@ ||f||% controls complexity of the model

@ ®(x) encodes CNN architecture independently of the model
(smoothness, invariance, stability to deformations)

Useful kernels in practice:

e Convolutional kernel networks (CKNs, Mairal, 2016) with efficient
approximations

o Extends to neural tangent kernels (NTKs, Jacot et al., 2018) of
infinitely wide CNNs (Bietti and Mairal, 2019b)
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Recap: Construction of the RKHS for continuous signals

g Q — Hy zp(w) € Hy,
linear pooling

Tro0.5 12— Hy Tr05(v) = r(Prerr-1(v)) € Hy

kernel mapping

Pray1(v) € Pr (patch extraction)

g1 (u) € Hi Tp1: Q= Hia

®p(x) = AsMuPrAn 1My 1Pp_y - AIMiP1xy € L2(Q,H,).
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Patch extraction operator P

Pixp-1(u) == (Xk-1(u + v))ves, € Pk = Hfﬁl

Prxj1(v) € Py, (patch extraction)

T 1(u) € My Tp1: Q= Hypa
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Patch extraction operator P

Pixp—1(u) == (Xk-1(u + v))ves, € Pk = Hsfl

@ Si: patch shape, e.g. box
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Non-linear mapping operator M

MkPka_l(u) = gok(kak_l(u)) € Hy

My Py Q = Hy, M, Pywg1(v) = or(Pewg1(v) € Hie

non-linear mapping

Pray(v) € Py
i1 :Q— Hy
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Non-linear mapping operator M

MkPka_l(U) = ng(Pka_l(u)) S Hk
Kernel mapping of homogeneous dot-product kernels:

(z,2)

Kz, 2) = 2l (5 ) = (oul) @)

Iik(u) = Zj.io bjuj with bj >0, Iik(].) =1

Examples

® Kexp((z,2)) = elzz)-1 (Gaussian kernel on the sphere)

° /{inv—poly(<z72,>) = 2—(1?2’)
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Pooling operator Ay

xk(u) = AkMkPka_l(u) = / ho'k(u — V)MkPka_l(V)dV € Hk

Rd

2 1= ApMy Pz 1 0 Q= Hye 2p(w) = ApMyPea 1 (w) € Hy

linear pooling

My Prxpy 0 Q@ — Hy
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Pooling operator Ay

xk(u) = AkI\/IkPka_l(u) = / ho’k(u — V)MkPka_l(V)dV € Hk

Rd

@ h,,: pooling filter at scale o
° hy (u):= U;dh(u/ak) with h(u) Gaussian

o linear, non-expansive operator: ||Ax| <1
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Pooling operator Ay

xk(u) = AkI\/IkPka_l(u) = / ho’k(u — V)MkPka_l(V)dV € Hk

Rd

hs,: pooling filter at scale oy
hy, (u) = U;dh(u/o’k) with h(u) Gaussian
linear, non-expansive operator: |Ax|| <1

In practice: discretization, sampling at resolution oy after pooling

e 6 6 o o

“Preserves information” when subsampling < patch size



Recap: Pk, Mk, Ak

g o Q= Hy zr(w) € Hp
linear pooling

w051 = Hy wi0.5(0) = P (Pear (v) € Hy,

kernel mapping

Py 1(v) € Py (patch extraction)

T 1(“) € Hi T1 Q= Hia
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Recap: multilayer construction
Multilayer representation

®(x0) = AsMpPrAn 1My 1Pn 1 - ALMiPixg € L[2(Q,H,).

@ Sy, ok grow exponentially in practice (i.e., fixed with subsampling).
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Recap: multilayer construction
Multilayer representation

®(x0) = AsMpPrAn 1My 1Pn 1 - ALMiPixg € L[2(Q,H,).

@ Sy, ok grow exponentially in practice (i.e., fixed with subsampling).

Assumption on xg
@ X is typically a discrete signal aquired with physical device.

@ Natural assumption: xg = Agx, with x the original continuous
signal, Ag local integrator with scale o (anti-aliasing).
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Recap: multilayer construction
Multilayer representation

®(x0) = AsMpPrAn 1My 1Pn 1 - ALMiPixg € L[2(Q,H,).

@ Sy, ok grow exponentially in practice (i.e., fixed with subsampling).

Assumption on xg
@ X is typically a discrete signal aquired with physical device.

@ Natural assumption: xg = Agx, with x the original continuous
signal, Ag local integrator with scale o (anti-aliasing).

Final kernel

Ken(x,x') = (&(x), &(x')) 2y = /Q en (1), 5. (1))l
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Warmup: translation invariance

Representation

Op(x) = ApMaPpAniMp1Poy - AL My P Aox.

How to achieve translation invariance?

e Translation: Lcx(u) = x(u — ¢).
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Warmup: translation invariance

Representation

®p(x) 1= AnMnPpAniMp1Ppy -+ AL My Py Aox.

How to achieve translation invariance?
e Translation: Lcx(u) = x(u — ¢).

e Equivariance - all operators commute with L.: UL, = L.,
[®n(Lex) = Pn(x)[| = [[LcPn(x) — Pa(x)]|

< ILeAn = Anll - [IMa Pr® pa (X))
S HLcAn - A,,HHX”
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Warmup: translation invariance

Representation
®p(x) 1= AnMnPpAn1Mp1Poi -+ ALMyi Py Agx.
How to achieve translation invariance?

e Translation: Lcx(u) = x(u — ¢).

e Equivariance - all operators commute with L.: UL, = L.,

[®n(Lex) = Pa(x)|| = [[LcPn(x) — Pa(x)]|
< ILeAn = Anll - [IMa Pr® pa (X))
S HLcAn - A,,HHX”

o Mallat (2012): ||L, A, — Anll < £[7]l0o (operator norm).

— o,
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Warmup: translation invariance

Representation

®p(x) 1= AnMnPpAniMp1Ppy -+ AL My Py Aox.

How to achieve translation invariance?
e Translation: Lcx(u) = x(u — ¢).

e Equivariance - all operators commute with L.: UL, = L.,

[®n(Lex) = Pa(x)|| = [[LcPn(x) — Pa(x)]|
< ILeAn = Anll - [IMa Pr® pa (X))
S HLcAn - AnHHX”

e Mallat (2012): ||[LcAn — Apll < %c (operator norm).
@ Scale o, of the last layer controls translation invariance.
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Stability to deformations

Representation

Op(x) = ApMaPpAniMp1Poy - AL My P Aox.

How to achieve stability to deformations?

@ Patch extraction P, and pooling Ax do not commute with L;!
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Stability to deformations

Representation

®p(x) 1= AnMnPpAniMp1Ppy -+ AL My Py Aox.

How to achieve stability to deformations?
@ Patch extraction P, and pooling Ax do not commute with L;!
o ||AkL; — LAkl < Gi||VT||x (from Mallat, 2012).
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Stability to deformations

Representation

®p(x) 1= AnMnPpAniMp1Ppy -+ AL My Py Aox.

How to achieve stability to deformations?
@ Patch extraction P, and pooling Ax do not commute with L;!
o ||[Ak, L:]|l < Gi]|VT]|x (from Mallat, 2012).
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Stability to deformations

Representation
b, (x) = AgM P A i M1 Py -+ A My P Apx.
How to achieve stability to deformations?
@ Patch extraction P, and pooling Ax do not commute with L;!

o ||[Ak, L:]|l < Gi]|VT]|x (from Mallat, 2012).
e But: [Py, L;] is unstable at high frequencies!
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Stability to deformations

Representation

®p(x) 1= AnMnPpAniMp1Ppy -+ AL My Py Aox.

How to achieve stability to deformations?

Patch extraction Py and pooling Ay do not commute with L,!
I[Ak, Lr]|| < Gi||VT]|so (from Mallat, 2012).

But: [Py, L;] is unstable at high frequencies!

Adapt to current layer resolution, patch size controlled by o—;:

I[PkAk-1, L7]]| < CLillVTlo0 sup |u| < Kok
uESK
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Stability to deformations

Representation

®p(x) 1= AnMnPpAniMp1Ppy -+ AL My Py Aox.

How to achieve stability to deformations?

Patch extraction Py and pooling Ay do not commute with L,!
I[Ak, Lr]|| < Gi||VT]|so (from Mallat, 2012).

But: [Py, L;] is unstable at high frequencies!

Adapt to current layer resolution, patch size controlled by o—;:

I[PkAk-1, L7]]| < CLillVTlo0 sup |u| < Kok
uESK

o (i, grows as k9Tl — more stable with small patches
(e.g., 3x3, VGG et al.).
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Stability to deformations

Theorem (Stability of CKN (Bietti and Mairal, 2019a))
Let ®,(x) = ®(Aox) and assume |V T|o0 < 1/2,

o Translation invariance: large o,
o Stability: small patch sizes (8 ~ patch size, Cs = O(33) for images)
@ Signal preservation: subsampling factor ~ patch size

= need several layers with small
patches n = O(log(on/00)/ log )
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Stability to deformations

Theorem (Stability of CKN (Bietti and Mairal, 2019a))
Let ®,(x) = ®(Aox) and assume |V T|o0 < 1/2,

C
19a(Lrx) = @00l < (3 (14 ) 197l + = 7o) ]
n
o Translation invariance: large o,
o Stability: small patch sizes (8 ~ patch size, Cs = O(33) for images)
@ Signal preservation: subsampling factor ~ patch size

= need several layers with small
patches n = O(log(on/00)/ log )

@ Achieved by controlling norm of commutator [L,, PAx]

o Extend result by Mallat (2012) for controlling ||[L, A]|
o Need patches Si adapted to resolution o4_1: diam Sx < Bok1
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Beyond the translation group

Can we achieve invariance to other groups?
o Group action: Lgx(u) = x(g~'u) (e.g., rotations, reflections).

o Feature maps x(u) defined on u € G (G: locally compact group).
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Beyond the translation group

Can we achieve invariance to other groups?
o Group action: Lgx(u) = x(g~'u) (e.g., rotations, reflections).

o Feature maps x(u) defined on u € G (G: locally compact group).

Recipe: Equivariant inner layers + global pooling in last layer
e Patch extraction:
Px(u) = (x(uv))yves.
@ Non-linear mapping: equivariant because pointwise!

e Pooling (u: left-invariant Haar measure):

Ax(u):/Gx(uv)h(v)du(v):/Gx(v)h(u_lv)d,u(v).

related work (Sifre and Mallat, 2013; Cohen and Welling, 2016; Raj et al., 2016)...
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Stability to deformations for convolutional NTK

Theorem (Stability of NTK (Bietti and Mairal, 2019b))
Let ®,(x) = ®PNTK(Agx), and assume ||V 7o < 1/2

[®n(Lrx) = ®n(x)||

C
< (o IV T + G197l + VAT Tl ) I
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Discretization and signal preservation: example in 1D

o Discrete signal Xi in £2(Z,Hy) vs continuous ones xi in L2(IR, Hy).

@ X,: subsampling factor s after pooling with scale oy = si:

)'(k[n] = /Z\k Mk I5k)_(k—1 [nsk].
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Discretization and signal preservation: example in 1D

o Discrete signal Xi in £2(Z,Hy) vs continuous ones xi in L2(IR, Hy).
@ X,: subsampling factor s after pooling with scale oy = si:

)'(k[n] = /Z\k Mk I5k)_(k—1 [nsk].

o Claim: We can recover Xxi_1 from X if factor s, < patch size.
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Discretization and signal preservation: example in 1D

o Discrete signal Xi in £2(Z,Hy) vs continuous ones xi in L2(IR, Hy).

@ X,: subsampling factor s after pooling with scale oy = si:

)'(k[n] = /Z\k Mk 'Bk)_(k—l [nsk].

o Claim: We can recover Xxi_1 from X if factor s, < patch size.

@ How? Recover patches with linear functions (contained in Hy)
(fu, MicPicsic—1(1)) = fu (Pixi—1(u)) = (w, Pexic—1(u)),
and

Pixi_1(u) = Z (Fors My Prxic—1(u))w.
weB
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Discretization and signal preservation: example in 1D

o Discrete signal Xi in £2(Z,Hy) vs continuous ones xi in L2(IR, Hy).

@ X,: subsampling factor s after pooling with scale oy = si:

)'(k[n] = /Z\k Mk 'Bk)_(k—l [nsk].

o Claim: We can recover Xxi_1 from X if factor s, < patch size.

@ How? Recover patches with linear functions (contained in Hy)
(fu, MicPicsic—1(1)) = fu (Pixi—1(u)) = (w, Pexic—1(u)),

and

Pixi_1(u) = Z (Fors My Prxic—1(u))w.
weB

Warning: no claim that recovery is practical and/or stable.
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Discretization and signal preservation: example in 1D

jk—1| |
deconvolution
ApT_y | |
recovery with linear measurements
| ] ] |

/ downsampling

Ak]gfkpkikfl | | | | | | |

/
linear pooling ¢
>

My Py | | | | | |

dot-product kernel

S N |

PrZp_1 (11,) € Py
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RKHS of patch kernels K}

Ki(2,2) = |rz||||z’||ﬁ:( (z,2) ) L) =Y b

/
[E4llEal =

What does the RKHS contain?

Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels K}

Ki(2,2) = |rz||||z’||ﬁ:( (z,2) ) L) =Y b

/
[E4llEal =

What does the RKHS contain?

@ RKHS contains homogeneous functions:

fzelzllo((g,2)/ll2]])-

Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels K}

Kl ?) = e (50 ) ela) =3 by

What does the RKHS contain?

@ RKHS contains homogeneous functions:

fiz|zllo((g, 2)/llzID)-
@ Smooth activations: o(u) = Z;?OO ajuj with a; > 0.

o Norm: [[f[2,, < C2(lgll?) = =20 2 ll? < co.

Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels K}

Examples:
o o(u) = u (linear): C2(\2) = O()\?).
o o(u) = uP (polynomial): C2()\2) = O(\?P).
e o ~ sin, sigmoid, smooth ReLU: C2(\2) = O(e’).

Fixmolx) f:x e |x|o(wx/|x])
200 rev 41 — RelLy, w=1
— sRelLU —— sReLU,w =0
15 34 — sReLU,w =05
— sRelU,w=1
_ —_ —— sRelLU,w =2
Z10 =21

~20 -15 -1.0 0.5 00 05 10 15 20 -20 -15 -1.0 -0.5 0.0 05 1.0 15 2.0
X X
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Constructing a CNN in the RKHS H¢

Some CNNs live in the RKHS: “linearization” principle
f(X) = Uk(AkUk—l(Ak—l e 0‘2(A20‘1(A1X)) .. )) = <f, ¢(X)>’H
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Constructing a CNN in the RKHS H

Some CNNs live in the RKHS: “linearization” principle
f(X) = Uk(AkUk—l(Ak—l e 02(A201(A1X)) . )) = <f, ¢(X)>'H.

Consider a CNN with filters W/ (u), u € S.
e k: layer;
e i: index of filter;
e j: index of input channel.

“Smooth homogeneous” activations .

The CNN can be constructed hierarchically in Hy.

Norm (linear layers):

2 2 2 2 2
1o 1" < [IWhiall2 - [Wall2 - [[Wallz - - (WALl

(]

Linear layers: product of spectral norms.
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Link with generalization

Direct application of classical generalization bounds

@ Simple bound on Rademacher complexity for linear/kernel methods:

BR
Fg={f € Hi,||f|| < B} = Radpy(Fg) <O | —].
2 = { € M. 7] < B) — Radn(Fa) < O (7 )
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Link with generalization

Direct application of classical generalization bounds

@ Simple bound on Rademacher complexity for linear/kernel methods:

BR
Fg={f € Hi,||f|| < B} = Radpy(Fg) <O | —].
2 = { € M. 7] < B) — Radn(Fa) < O (7 )

o Leads to margin bound O(||#y||R/vv/N) for a learned CNN fy with
margin (confidence) v > 0.

@ Related to recent generalization bounds for neural networks based
on product of spectral norms (e.g., Bartlett et al., 2017;
Neyshabur et al., 2018).

(see, e.g., Boucheron et al., 2005; Shalev-Shwartz and Ben-David, 2014)...
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Deep convolutional representations: conclusions

Study of generic properties of signal representation

o Deformation stability with small patches, adapted to resolution.

e Signal preservation when subsampling < patch size.

@ Group invariance by changing patch extraction and pooling.
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Deep convolutional representations: conclusions

Study of generic properties of signal representation

o Deformation stability with small patches, adapted to resolution.

@ Signal preservation when subsampling < patch size.

@ Group invariance by changing patch extraction and pooling.

Applies to learned models
e Same quantity ||f|| controls stability and generalization.

@ “higher capacity” is needed to discriminate small deformations.
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Deep convolutional representations: conclusions

Study of generic properties of signal representation

o Deformation stability with small patches, adapted to resolution.

@ Signal preservation when subsampling < patch size.

@ Group invariance by changing patch extraction and pooling.

Applies to learned models
e Same quantity ||f|| controls stability and generalization.

@ “higher capacity” is needed to discriminate small deformations.

Questions:
@ Better regularization?
@ How does SGD control capacity in CNNs?
@ What about networks with no pooling layers? ResNet?
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Outline

0 Open Problems and Research Topics

@ Foundations of deep learning from a kernel point of view

@ Application to graphs
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Graph-structured data is everywhere

Propanal (E)/(Z)-1-Propenol Acetone

A

Acetaldehyde Vinyl Aleohol Ethylene Oxide

Aldehyde Enol

(a) molecules

Joe— @ @
e =
- e
o o ’ o L
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S

AL e Lo
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(d) chemical pathways

(c) social networks
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Learning graph representations

State-of-the-art models for representing graphs:
e Deep learning for graphs: graph neural networks (GNNs);
e Graph kernels: Weisfeiler-Lehman (WL) graph kernels;

@ Hybrid models attempt to bridge both worlds: graph neural
tangent kernels (GNTK).
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Learning graph representations

State-of-the-art models for representing graphs:
e Deep learning for graphs: graph neural networks (GNNs);
e Graph kernels: Weisfeiler-Lehman (WL) graph kernels;

@ Hybrid models attempt to bridge both worlds: graph neural
tangent kernels (GNTK).

Our model:

@ A new type of multilayer graph kernel: more expressive than WL
kernels;

@ Learning easy-to-regularize and scalable unsupervised graph
representations;

@ Learning supervised graph representations like GNNs.
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Graphs with node attributes

G=V.Ea: VR

a(u) = [0.3,0.8,0.5]

@ A graph is defined as a triplet (V, €&, a);

@ V and & correspond to the set of vertices and edges;

e a:V — R?is a function assigning attributes to each node.
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Graph kernel mappings

@ Map each graph G in X' to a vector ®(G) in H, which lends itself to
learning tasks.

o A large class of graph kernel mappings can be written in the form

d(G) = Z ©Ybase(lG(u))  where ppase embeds some local patterns £
uey

(Shervashidze et al., 2011; Lei et al., 2017; Kriege et al., 2019)
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Graph kernel mappings

@ Map each graph G in X' to a vector ®(G) in H, which lends itself to
learning tasks.

o A large class of graph kernel mappings can be written in the form

K(G G <Z (Pbase EG Z QObase £G’ >

uey u'ey’

(G) (G')
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Graph kernel mappings

@ Map each graph G in X' to a vector ®(G) in H, which lends itself to
learning tasks.

o A large class of graph kernel mappings can be written in the form

K(G, G/) = Z Z <Q0base(£G(u))7Qpbase(gG’(ul)»'

uey u'ey’
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Graph kernel mappings

@ Map each graph G in X' to a vector ®(G) in H, which lends itself to
learning tasks.

o A large class of graph kernel mappings can be written in the form

K(G, GI) = Z Z K'base(gG(u)agG’(ul))‘

uey u'ey’
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Basic kernels: walk and path kernel mappings

@ Path kernels are more expressive than walk kernels, but less
preferred for computational reasons.
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Basic kernels: walk and path kernel mappings

@ Pk(G, u) := paths of length k from node u in G. The k-path
mapping is

gopath(u) = Z 5a(p) - q)(G) = Z Z (53(,,).

PEPK(G,u) u€V pePy(G,u)

@ a(p): concatenated attributes in p; ¢: the Dirac function;

@ ®(G) can be interpreted as a histogram of paths occurrences;
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A relaxed path kernel

1.0 5

0.8 4 Gaussian

0.6

0.4 1 SOpath(U) = Z 6a(p)(')

021 pGPk(G,U)

Issues of the path kernel mapping:

@ ) allows hard comparison between paths thus only works for discrete
attributes;

@ J is not differentiable, which cannot be “optimized” with
back-propagation.
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A relaxed path kernel

1.0 5
0.8 4 Gaussian

064 Sppath(u) = Z 5a(p)(')
0.4 pPEPK(G,u)

0.2 2
oo R SR LGN

@ PEPK(G,u)

Issues of the path kernel mapping:

@ ) allows hard comparison between paths thus only works for discrete
attributes;

@ J is not differentiable, which cannot be “optimized” with
back-propagation.
Relax it with a “soft” and differentiable mapping
@ interpreted as the sum of Gaussians centered at each path from u.
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One-layer GCKN: a closer look at the relaxed path kernel

@ We define the one-layer GCKN as the relaxed path kernel mapping

p1(u) == Z e~ 7 2P = = Z erer(a(p)) € Ha.

pepk(Gvu) Pepk(Gvu)

@ This formula can be divided into 3 steps:

e path extraction: enumerating all Py(G, u);

o kernel mapping: evaluating Gaussian embedding ¢rgr of path
features;

e path aggregation: aggregating the path embeddings.
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One-layer GCKN: a closer look at the relaxed path kernel

@ We define the one-layer GCKN as the relaxed path kernel mapping

p1(u) == Z e~ 7 2P = = Z erer(a(p)) € Ha.

pepk(G7u) Pepk(Gvu)

@ This formula can be divided into 3 steps:

e path extraction: enumerating all Py(G, u);

o kernel mapping: evaluating Gaussian embedding ¢rgr of path
features;

e path aggregation: aggregating the path embeddings.

@ We obtain a new graph with the same topology but different features

(V. &, a) 220 (V, €, ¢1).
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Construction of one-layer GCKN
V. 01V = Hi)
!

w1(u) = wrpr(a(p1)) + prer(a(p2)) + erer(a(ps))

path aggregation

path aggregation
kernel mapping

wrer(a(ps))
orpr(al

erer(a(pr))

path extraction
kernel mapping

-0

V,Ea:V = RY
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From one-layer to multilayer GCKN

@ We can repeat applying ¢path to the new graph

Sopath <Ppath Ppath Sopath
—_— ..

(V,€,a) = (V,&,¢1) = (V. €, ¢2) — (V,€, ).

o Final graph representation at layer j, (G) =3, oy, j(u).
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From one-layer to multilayer GCKN

@ We can repeat applying ¢path to the new graph

Sopath

(V,€,a) 2205 (V, €, 01) 220 (V, €, 00) 220 . 20205 (V,€, ¢)).

o Final graph representation at layer j, (G) =3, oy, j(u).
@ Why is the multilayer model interesting ?

applying @path once can capture paths: GCKN-path;
applying twice can capture subtrees: GCKN-subtree;
applying more times may capture higher-order structures?

Long paths cannot be enumerated due to computational complexity,
yet multilayer model can capture long-range substructures.
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Scalable approximation of Gaussian kernel mapping

Ppath (U) = Z erer(a(p))-

pGPk(G,U)

e prer(a(p)) = e—2llatp)—1? € H is infinite-dimensional;

(Chen et al., 2019a,b; Williams and Seeger, 2001)
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Scalable approximation of Gaussian kernel mapping

(Ppath(u): Z ‘PRBF(a(P))'

pG'Pk(G,U)

e prer(a(p)) = e~ 2112(P—I" ¢ 4 is infinite-dimensional;

e Nystrom provides a finite-dimensional approximation W(a(p)) by
orthogonally projecting prer(a(p)) onto some finite-dimensional
subspace:

Span(yprer(z1), - - -, ¥reF(2q)) parametrized by Z = {z,...,z,},

where z; € R can be interpreted as path features.

(Chen et al., 2019a,b; Williams and Seeger, 2001)
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Scalable approximation of Gaussian kernel mapping

(Ppath(u): Z ‘PRBF(a(P))'

pE'Pk(G,U)

e prer(a(p)) = e~ 2112(P—I" ¢ 4 is infinite-dimensional;

e Nystrom provides a finite-dimensional approximation W(a(p)) by
orthogonally projecting prer(a(p)) onto some finite-dimensional
subspace:

Span(yprer(z1), - - -, ¥reF(2q)) parametrized by Z = {z,...,z,},

where z; € R can be interpreted as path features.

@ The parameters Z can be learned by

o (unsupervised) K-means on the set of path features;
o (supervised) end-to-end learning with back-propagation.

(Chen et al., 2019a,b; Williams and Seeger, 2001)
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Comparison of GCKN and GNN

GCKN VS. GNN
fockn(G) = > vi(v) fonn(G) = Y fi(w)
ueG L ueG
e(u) = > K(Z72) 26(Z ¥k-1(p)) fi(u)= > ReLU(Zfi_1(v))

PEPK(G,u) veN (u)

local path aggregation neighborhood aggregation
projection in a known RKHS ?
supervised and unsupervised supervised
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Experiments on graphs with discrete attributes

MUTAG

PRQTEINS

IMDB:M —>pTC

=== WL subtree

== GNTK
GCN

...... GIN

—— GCKN-path-unsup

—— GCKN-subtree-unsup
GCKN-subtree-sup

@ Accuracy improvement
with respect to the WL
subtree kernel.

@ GCKN-path already
outperforms the
baselines.

@ Increasing number of
layers brings larger
improvement.

@ Supervised learning does
not improve
performance, but leads
to more compact
representations.

(Shervashidze et al., 2011; Du et al., 2019; Xu et al., 2019; Kipf and Welling, 2017)
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Experiments on graphs with continuous attributes

ENZYMES

@ Accuracy improvement
with respect to the
WW.L kernel.

PRATENS @ Results similar to
discrete case.

o Path features seem
presumably predictive
— enough.

== WWL
== GNTK
—— GCKN-path-unsup
—— GCKN-subtree-unsup
GCKN-subtree-sup

(Du et al., 2019; Togninalli et al., 2019)
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Model interpretation for Mutagenicity prediction

@ ldea: find the minimal connected component that preserves the

prediction.
C O Cl H N F
H = B
GCKN Wl Céb

(Ying et al., 2019)
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Outline

0 Open Problems and Research Topics

@ Foundations of deep learning from a kernel point of view

@ Application to biological sequences
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Sequence modeling as a supervised learning problem

i@
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Sequence modeling as a supervised learning problem

-~ %
@ @ -
o W

o Biological sequences xi,...x, € X and their associated labels
.y17 A 7yn'
@ Goal: learning a predictive and interpretable function f : X — R

p;l;g;ZLy,, )+ pQ(f)

regularization

emplrlcal rlsk, data fit

@ How do we define the functional space F7
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String kernels

A classical approach for modeling biological sequences over alphabet A
relies on string kernels.

K x') =" du(x)6u(x) ,
ue Ak
where u is a k-mer over an alphabet A and §,(x) can be:
@ the number of occurrences of u in x: spectrum kernel (Leslie et al.,
2002);
@ the number of occurrences of v in x up to m mismatches:
mismatch kernel (Leslie and Kuang, 2004);

@ the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lodhi et al., 2002).

What is ®(x)?
It can be interpreted as a histogram of pattern occurences.
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String kernels

A classical approach for modeling biological sequences over alphabet A
relies on string kernels.

Kixox) = 3 6u(x)8,(x') = (0(x), (x')),
ue Ak
where u is a k-mer over an alphabet A and §,(x) can be:
@ the number of occurrences of u in x: spectrum kernel (Leslie et al.,
2002);
@ the number of occurrences of v in x up to m mismatches:
mismatch kernel (Leslie and Kuang, 2004);

@ the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lodhi et al., 2002).

What is ®(x)?
It can be interpreted as a histogram of pattern occurences.
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Convolutional kernel networks for sequence modeling

Define a continuous relaxation of the mismatch kernel (Chen et al.
2019a; Morrow et al., 2017)

|x|—k+1 |x'|—k+1

KCKN(X,XI) = Z Z KO( X[i:i+k] 7X/U:j+k])'

=il j=1
one k-mer

@ Use one-hot encoding

A
T
X[i:;+5] = TTGAG C

o O+~ O
O O~ O
= O O O
o O o
= O O O

G

@ Ky is a Gaussian kernel over one-hot representations of k-mers (
kad)

1

in
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Convolutional kernel networks for sequence modeling

Define a continuous relaxation of the mismatch kernel (Chen et al.,

2019a; Morrow et al., 2017)
[x|—k+1 |[x'|—k+1

KCKN X, X Z Z QDO( x[l i+K] ) SDO(X[J J+k])>

onek—mer
@ Use one-hot encoding
AJoOOOT1OQ0
X(ii15] = TTGAG g (1) (1) 8 8 8
G |0O01O01

@ Ky is a Gaussian kernel over one-hot representations of k-mers (in

kad)'
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Convolutional kernel networks for sequence modeling

Define a continuous relaxation of the mismatch kernel (Chen et al.,
2019a; Morrow et al., 2017)

|x]—k+1 |x'|—k+1
KCKN(X7X/):< Z SOO(X[i:iJrk])v Z SDO(X/L,':j+k])>~

=i j=1
®(x) d(x’)
@ Use one-hot encoding
A [0OO0OO0OT1T0
T 11000
X[i:i+5] =TTGAG — C 000 0 0
G |0O01O01

@ Ky is a Gaussian kernel over one-hot representations of k-mers (in
kad)'
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Scalable Approximation of Kernel Mapping (with more

details this time)

Ko(u, u') = (po(u), wo(t')) 2, = (Yo(u), ho(u'))ra-

e Nystrom provides a finite-dimensional approximation g(u) in R9Y
by orthogonally projecting (o(u) onto some finite-dimensional

subspace:

Eo = Span(yo(z1), .., o0(zq)) parametrized by Z = {z,..., z4}.

9?0(10)

Hilbert space Hg
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Scalable Approximation of Kernel Mapping (with more
details this time)

Ko(u, u') = (po(u), wo(t')) 2, = (Yo(u), ho(u'))ra-

e Nystrom provides a finite-dimensional approximation g(u) in R9Y
by orthogonally projecting (o(u) onto some finite-dimensional
subspace:

Eo = Span(yo(z1), .., o0(zq)) parametrized by Z = {z,..., z4}.
o General case:

Yo(u) = Ko(Z,2) Y2 Ko(Z, u).
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Scalable Approximation of Kernel Mapping (with more
details this time)

Ko(u, u') = (@o(u), wo(u')) o & (Po(u), Po(u))re.

e Nystrom provides a finite-dimensional approximation g(u) in RY
by orthogonally projecting o(u) onto some finite-dimensional
subspace:

Eo = Span(wo(z1), ..., vo0(zq)) parametrized by Z = {z,..., z4}.

o Case of dot-product kernels Ky(u, ') = k({u, v')):

Yo(u) = k(ZTZ)V2k(Z ).
linear operation - pointwise nonlinearity - linear operation (subject
to interpretation)

Ex: k(8) = €71, polynomial, inverse polynomial, arc-cosine
kernels....
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Single-Layer CKN for sequence modeling

U(x) € R |:| -
;) X prediction layer

(w, ¥(x))

I’ ‘\
¢ global pooling *
/ \
’ \

o(P;(x)) € R

'\
’ \
I’ ‘\
(T 1T

kernel mapping approximation

IK 4 (Pi(x))

Uo(Pi(x) = K,
xex| | [T [
P;(x) k-mer x(u) € A
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Multilayer CKN for sequence modeling

Xy €H,
* ' |:| prediction layer

.X] (1,‘3) € Hy
0| RN

.
linear pooling N
x0.5(v2) = p1(Pixo(v2)) € Ha
Xo.siQoHHll | | |

= | | convolutional
kernel layer

dot-product kernel
xo(v1) = po(Pox(v1)) € Ho

%0100 = % | | [ ]| | |

Pixo(v2) € P, i
1%0(v2) ! domain-specific kernel embedding
layer

x:0 4| [ | [ [ ||
x(u) € A Pyx(v1) € Py (patch)
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From k-mers to gapped k-mers

k-mers with gaps
o For a sequence x = x3 ... x, € X of length n and a sequence of
ordered indices 1 = (i1, ..., ix) in I(k,n), we define a k-substring as:

x['] = Xjy Xy « « + Xij -
@ We introduce the quantity
gaps(1) = number of gaps in index sequence.

o Example: x = ABRACADABRA

1= (4,5,8,9,11) X[ = RADAR gaps(1) = 3.
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Recurrent kernel networks

Comparing all the k-mers between a pair of sequences (single layer
models)

|x|—k+1 |x'|—k+1

KCKN(X,XI) = Z Z Ko (x[i:i+k]7x/U:j+k]> :

i=1 =1

@ The kernel mapping is ®(x) = Zli)il_kﬂ ©o(X{i:itk])-
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Recurrent kernel networks

Comparing all the gapped k-mers between a pair of sequences
(single layer models)

)= 35 s o)

1€1(k,|x]) JEI(K,|X])

o The kernel mapping is ®(x) = >_,c(x |x|) /\gaps(')apo(x[,]).
@ This is a differentiable relaxation of the substring kernel.

But enumerating all possible substrings is costly...
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Approximation and recursive computation of RKN

Approximate feature map of RKN kernel
The approximate feature map of Krxn via Nystrom approximation is

U(x)= > a8Plyg(x;) € RY,

1€1(k,t)
where, as usual with a dot-product kernel,
1/}0(X[,]) = H(ZTZ)_I/QK(ZTX[,]).

@ The sum can be computed by using dynamic programming (Lodhi
et al., 2002),

@ which leads to a particular recurrent neural network (see Lei et al.,
2017).
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A feature map for the single-layer RKN

When Kj is a Gaussian kernel, the feature map of RKN is a mixture of
Gaussians centered at xj, weighted by the corresponding penalization
\&2ps(1)

o (xefi)) ] SO (xli)) ]

pooling

x5 D:I:I:' all embedded
— 11 1 k-mers

i1 iy iy g A& (x[i])
one demerofx| | | [ [ [ ] NN |
’il ’iQ )\ 1‘3 )\ ’i4 ’il ’iQ )\ 13 )\ ik
k-mer kernel embedding one-layer RKN

Figure: Example of Krkn for k = 4
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Results

Protein fold classification on SCOP 2.06 (Hou et al., 2017) (using
more informative sequence features including PSSM, secondary

structure and solvent accessibility)

Method fParams Accuracy Level-stratified accuracy (topl/top5)
topl topb family superfamily fold
PSI-BLAST - 84.53 86.48 82.20/84.50 86.90/88.40 18.90/35.100
DeepSF 920k 73.00 90.25 75.87/91.77  72.23/90.08 51.35/67.57
CKN (128 filters) 211k 76.30 92.17 83.30/94.22 74.03/91.83  43.78/67.03
CKN (512 filters) 843k 84.11 9429 90.24/95.77 82.33/94.20 45.41/69.19
RKN (128 filters) 211k 77.82 9289 76.91/93.13 78.56/92.98  60.54/83.78
RKN (512 filters) 843k  85.29 94.95 84.31/94.80 85.99/95.22 71.35/84.86

Note: More experiments with statistical tests have been conducted in

our paper.

(Hou et al., 2017; Chen et al., 2019a)

765 /785



Logos, by finding pre-image of each filter
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Results

Protein fold recognition on SCOP 1.67 (widely used in the past)

Method pooling one-hot BLOSUM62
auROC auROC50 auROC auROC50

SVM-pairwise 0.724 0.359

Mismatch 0.814 0.467

LA-kernel - - 0.834 0.504
LSTM 0.830 0.566 - -
CKN 0.837 0.572 0.866 0.621
RKN mean 0.829 0.541 0.840 0.571
RKN max 0.844 0.587 0.871 0.629

RKN (unsup) mean  0.805 0.504 0.833 0.570

(Liao and Noble, 2003; Leslie et al., 2003; Vert et al., 2004b; Hochreiter et al., 2007;
Chen et al., 2019a)
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Conclusion of the course
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What we saw

Basic definitions of p.d. kernels and RKHS

How to use RKHS in machine learning

The importance of the choice of kernels, and how to include “prior
knowledge” there.

Several approaches for kernel design (there are many!)

Review of kernels for strings and on graphs

Recent research topics about kernel methods
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What we did not see

@ How to automatize the process of kernel design (kernel selection?
kernel optimization?)

@ How to deal with non p.d. kernels

@ Bayesian view of kernel methods, called Gaussian processes.
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