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Main goal of this course

Extend
well-understood, linear statistical learning techniques

to
real-world, complicated, structured, high-dimensional data

based on
a rigorous mathematical framework

leading to
practical modelling tools and algorithms
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Organization of the course

Contents
1 Present the basic mathematical theory of kernel methods.

2 Introduce algorithms for supervised and unsupervised machine
learning with kernels.

3 Develop a working knowledge of kernel engineering for specific data
and applications (graphs, biological sequences, images).

4 Discuss open research topics related to kernels such as large-scale
learning with kernels and “deep kernel learning”.

Practical

Course homepage with slides, schedules, homework etc...:
https://mva-kernel-methods.github.io/course-page/

Evaluation: 20% homework + 40% data challenge + 40% exam.
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Part 1

Kernels and RKHS
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Overview

Motivations

Develop versatile algorithms to process and analyze data...

...without making any assumptions regarding the type of data
(vectors, strings, graphs, images, ...)

The approach

Develop methods based on pairwise comparisons.

By imposing constraints on the pairwise comparison function
(positive definite kernels), we obtain a general framework for
learning from data (optimization in RKHS).
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Representation by pairwise comparisons

1    0.5  0.3
0.5  1    0.6
0.3  0.6  1

K=

X

S

(S)=(aatcgagtcac,atggacgtct,tgcactact)φ

Idea

Define a “comparison function”: K : X × X 7→ R.
Represent a set of n data points S = {x1, x2, . . . , xn} by the n × n
matrix:

[K]ij := K (xi , xj) .
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Representation by pairwise comparisons

Remarks

K is always an n × n matrix, whatever the nature of data: the same
algorithm will work for any type of data (vectors, strings, ...).

Total modularity between the choice of function K and the choice of
the algorithm.

Poor scalability with respect to the dataset size (n2 to compute and
store K)... but wait until the end of the course to see how to deal
with large-scale problems

We will restrict ourselves to a particular class of pairwise comparison
functions.
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Positive Definite (p.d.) Kernels

Definition

A positive definite (p.d.) kernel on a set X is a function K : X ×X → R
that is symmetric:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= K

(
x′, x

)
,

and which satisfies, for all N ∈ N, (x1, x2, . . . , xN) ∈ XN and
(a1, a2, . . . , aN) ∈ RN :

N∑

i=1

N∑

j=1

aiajK (xi , xj) ≥ 0.
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Similarity matrices of p.d. kernels

Remarks

Equivalently, a kernel K is p.d. if and only if, for any N ∈ N and any
set of points (x1, x2, . . . , xN) ∈ XN , the similarity matrix
[K]ij := K (xi , xj) is positive semidefinite.

Kernel methods are algorithms that take such matrices as input.
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The simplest p.d. kernel, for real numbers

Lemma

Let X = R. The function K : R2 7→ R defined by:

∀
(
x , x ′

)
∈ R2, K

(
x , x ′

)
= xx ′

is p.d.

Proof:

xx ′ = x ′x
∑N

i=1

∑N
j=1 aiajxixj =

(∑N
i=1 aixi

)2
≥ 0
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The simplest p.d. kernel, for vectors

Lemma

Let X = Rd . The function K : X 2 7→ R defined by:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
=
〈
x, x′

〉
Rd

is p.d. (it is often called the linear kernel).

Proof:

⟨x, x′⟩Rd = ⟨x′, x⟩Rd

∑N
i=1

∑N
j=1 aiaj ⟨xi , xj⟩Rd = ∥ ∑N

i=1 aixi ∥2Rd ≥ 0
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A more ambitious p.d. kernel

X •
•

•
• HΦ

• •
•

•

x Φ(x)

Lemma

Let X be any set, and Φ : X 7→ Rd . Then, the function K : X 2 7→ R
defined as follows is p.d.:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉

Rd .

Proof:

⟨Φ (x) ,Φ (x′)⟩Rd = ⟨Φ (x′) ,Φ (x)⟩Rd

∑N
i=1

∑N
j=1 aiaj ⟨Φ (xi ) ,Φ (xj)⟩Rd = ∥ ∑N

i=1 aiΦ (xi ) ∥2Rd ≥ 0
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Example: polynomial kernel

2R

x1

x2

x1

x2

2

For x = (x1, x2)
⊤ ∈ R2, let Φ(x) = (x21 ,

√
2x1x2, x

2
2 ) ∈ R3:

K (x, x′) = x21x
′2
1 + 2x1x2x

′
1x

′
2 + x22x

′2
2

=
(
x1x

′
1 + x2x

′
2

)2

=
〈
x, x′

〉2
R2 .

Exercise: show that ⟨x.x′⟩dRp is p.d. on X = Rp for any d ∈ N.
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Conversely: Kernels as inner products

Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set X if and only if there exists a Hilbert
space H and a mapping

Φ : X 7→ H
such that, for any x, x′ in X :

K
(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉

H .

X •
•

•
• HΦ

• •
•

•

x Φ(x)
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In case of ...

Definitions

An inner product on an R-vector space H is a mapping
(f , g) 7→ ⟨f , g⟩H from H2 to R that is bilinear, symmetric and such
that ⟨f , f ⟩H > 0 for all f ∈ H\{0}.
A vector space endowed with an inner product is called pre-Hilbert.

It is endowed with a norm defined as ∥ f ∥H = ⟨f , f ⟩
1
2
H.

A Cauchy sequence (fn)n≥0 is a sequence whose elements become
progressively arbitrarily close to each other:

lim
N→+∞

sup
n,m≥N

∥fn − fm∥H = 0.

A Hilbert space is a pre-Hilbert space complete for the norm ∥.∥H.
That is, any Cauchy sequence in H converges in H.

Completeness is necessary to keep “good” convergence properties of
Euclidean spaces in an infinite-dimensional context.
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Proof: finite case

Assume X = {x1, x2, . . . , xN} is finite of size N.

Any p.d. kernel K : X × X → R is entirely defined by the N × N
symmetric positive semidefinite matrix [K]ij := K (xi , xj).

It can therefore be diagonalized on an orthonormal basis of
eigenvectors (u1,u2, . . . ,uN), with non-negative eigenvalues
0 ≤ λ1 ≤ . . . ≤ λN , i.e.,

K (xi , xj) =

[
N∑

l=1

λlulu
⊤
l

]

ij

=
N∑

l=1

λl [ul ]i [ul ]j = ⟨Φ (xi ) ,Φ (xj)⟩RN ,

with

Φ (xi ) =




√
λ1[u1]i
...√

λN [uN ]i


 . □
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Proof: general case

Mercer (1909) for X = [a, b] ⊂ R (more generally X compact) and
K continuous.

Kolmogorov (1941) for X countable.

Aronszajn (1944, 1950) for the general case.

We will go through the proof of the general case by introducing the
concept of Reproducing Kernel Hilbert Spaces (RKHS).
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Functional spaces for machine learning

Before we go into formal details

Among the Hilbert spaces H mentioned in Aronszjan’s theorem, we
will see that one of them, called RKHS, is of interest to us.

This is a space of functions from X to R.
In other words, each data point x in X will be represented by a
function Φ(x) = Kx in H.

Example of functional mapping

Consider X = R. We could decide to represent each scalar x in R as
a Gaussian function centered at x :

Kx : y 7→ e−
1
2α

(x−y)2 .

What would be the corresponding H (if it exists)? What would be
the inner-product?
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Functional spaces for machine learning

What does it mean to map a data point to a function?

Ex: if x , y in R and K (x , y) = e−
1
σ2 (x−y)2 is the Gaussian kernel,

Φ(x) : t 7→ e−
1

2α2 (x−t)2

Φ(y) : t 7→ e−
1

2α2 (y−t)2

x y

Data points are mapped to Gaussian functions living in a Hilbert
space H.
But H is much richer and contains much more than Gaussian
functions!

Prediction functions f live in H: f (x) = ⟨f ,Φ(x)⟩.
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RKHS Definition

Definition

Let X be a set and H ⊂ RX be a class of functions forming a (real)
Hilbert space with inner product ⟨., .⟩H. The function K : X 2 7→ R is
called a reproducing kernel (r.k.) of H if

1 H contains all functions of the form

∀x ∈ X , Kx : t 7→ K (x, t) .

2 For every x ∈ X and f ∈ H the reproducing property holds:

f (x) = ⟨f ,Kx⟩H .

If a r.k. exists, then H is called a reproducing kernel Hilbert space
(RKHS).
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RKHS: why do we care?

The principle of RKHS gives us a simple recipe to do machine learning:

Map data x in X to a high-dimensional Hilbert space H (the RKHS)
through a kernel mapping Φ : X → H, with Φ(x) = Kx.

In H, consider simple linear models f (x) = ⟨f ,Φ(x)⟩H.
If X = Rp, a linear function in Φ(x) may be nonlinear in x.

For instance, for supervised learning, given training data
(yi , xi )i=1,...,n, we may want to minimize the empirical risk.

min
f ∈H

1

n

n∑

i=1

L(yi , f (xi )) + λ∥f ∥2H.

More formal details to come...

25 / 785



RKHS: why do we care?

The principle of RKHS gives us a simple recipe to do machine learning:

Map data x in X to a high-dimensional Hilbert space H (the RKHS)
through a kernel mapping Φ : X → H, with Φ(x) = Kx.

In H, consider simple linear models f (x) = ⟨f ,Φ(x)⟩H.
If X = Rp, a linear function in Φ(x) may be nonlinear in x.

For instance, for supervised learning, given training data
(yi , xi )i=1,...,n, we may want to minimize the empirical risk.

min
f ∈H

1

n

n∑

i=1

L(yi , f (xi )) + λ∥f ∥2H.

More formal details to come...

25 / 785



An equivalent definition of RKHS

Theorem

The Hilbert space H ⊂ RX is a RKHS if and only if for any x ∈ X , the
(linear) mapping:

F : H → R
f 7→ f (x)

is continuous.

Corollary

Convergence in a RKHS implies pointwise convergence, i.e., if (fn)n∈N
converges to f in H, then (fn (x))n∈N converges to f (x) for any x ∈ X .
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Proof

If H is a RKHS then f 7→ f (x) is continuous

If a r.k. K exists, then for any (x, f ) ∈ X ×H:

| f (x) | = | ⟨f ,Kx⟩H |
≤ ∥ f ∥H.∥Kx ∥H (Cauchy-Schwarz)

≤ ∥ f ∥H.K (x, x)
1
2 ,

because ∥Kx ∥2H = ⟨Kx,Kx⟩H = K (x, x). Therefore f ∈ H 7→ f (x) ∈ R
is a continuous linear mapping. □

Since F is linear, it is indeed sufficient to show that f → 0⇒ f (x)→ 0.
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Proof (Converse)

If f 7→ f (x) is continuous then H is a RKHS

Conversely, let us assume that for any x ∈ X the linear form
f ∈ H 7→ f (x) is continuous.
Then by Riesz representation theorem (general property of Hilbert
spaces) there exists a unique gx ∈ H such that:

f (x) = ⟨f , gx⟩H .

The function K (x, y) = gx (y) is then a r.k. for H. □

28 / 785



Uniqueness of r.k. and RKHS

Theorem

If H is a RKHS, then it has a unique r.k.

Conversely, a function K can be the r.k. of at most one RKHS.

Consequence

This shows that we can talk of ”the” kernel of a RKHS, or ”the” RKHS
of a kernel.
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Proof

If a r.k. exists then it is unique

Let K and K ′ be two r.k. of a RKHS H. Then for any x ∈ X :

∥Kx − K ′
x ∥2H =

〈
Kx − K ′

x,Kx − K ′
x

〉
H

=
〈
Kx − K ′

x,Kx

〉
H −

〈
Kx − K ′

x,K
′
x

〉
H

= Kx (x)− K ′
x (x)− Kx (x) + K ′

x (x)

= 0 .

This shows that Kx = K ′
x as functions, i.e., Kx(y) = K ′

x(y) for any
y ∈ X . In other words, K=K’. □

The RKHS of a r.k. K is unique

Left as exercise.
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An important result

Theorem

A function K : X × X → R is p.d. if and only if it is a r.k.
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Proof

A r.k. is p.d.

1 A r.k. is symmetric because, for any (x, y) ∈ X 2:

K (x, y) = ⟨Kx,Ky⟩H = ⟨Ky,Kx⟩H = K (y, x) .

2 It is p.d. because for any N ∈ N,(x1, x2, . . . , xN) ∈ XN , and
(a1, a2, . . . , aN) ∈ RN :

N∑

i ,j=1

aiajK (xi , xj) =
N∑

i ,j=1

aiaj
〈
Kxi ,Kxj

〉
H

= ∥
N∑

i=1

aiKxi ∥2H

≥ 0. □
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Proof

A p.d. kernel is a r.k. (1/4)

Let H0 be the vector subspace of RX spanned by the functions
{Kx}x∈X .
For any f , g ∈ H0, given by:

f =
m∑

i=1

aiKxi , g =
n∑

j=1

bjKyj ,

let:
⟨f , g⟩H0

:=
∑

i ,j

aibjK (xi , yj) .
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Proof

A p.d. kernel is a r.k. (2/4)

⟨f , g⟩H0
does not depend on the expansion of f and g because:

⟨f , g⟩H0
=

m∑

i=1

aig (xi ) =
n∑

j=1

bj f (yj) .

This also shows that ⟨., .⟩H0
is a symmetric bilinear form.

This also shows that for any x ∈ X and f ∈ H0:

⟨f ,Kx⟩H0
= f (x) .
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Proof

A p.d. kernel is a r.k. (3/4)

K is assumed to be p.d., therefore:

∥ f ∥2H0
=

m∑

i ,j=1

aiajK (xi , xj) ≥ 0 .

In particular Cauchy-Schwarz is valid with ⟨., .⟩H0
.

By Cauchy-Schwarz, we deduce that ∀x ∈ X :

| f (x) | =
∣∣ ⟨f ,Kx⟩H0

∣∣ ≤ ∥ f ∥H0 .K (x, x)
1
2 ,

therefore ∥ f ∥H0 = 0 =⇒ f = 0.

H0 is therefore a pre-Hilbert space endowed with the inner product
⟨., .⟩H0

.
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Proof

A p.d. kernel is a r.k. (4/4)

For any Cauchy sequence (fn)n≥0 in
(
H0, ⟨., .⟩H0

)
, we note that:

∀ (x,m, n) ∈ X × N2, | fm (x)− fn (x) | ≤ ∥ fm − fn ∥H0 .K (x, x)
1
2 .

Therefore for any x the sequence (fn(x))n≥0 is Cauchy in R and has
therefore a limit.

If we add to H0 the functions defined as the pointwise limits of
Cauchy sequences, then the space becomes complete and is
therefore a Hilbert space, with K as r.k. (up to a few technicalities,
left as exercise). □
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Application: back to Aronzsajn’s theorem

Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping

Φ : X 7→ H ,

such that, for any x, x′ in X :

K
(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉

H .

X •
•

•
• HΦ

• •
•

•

x Φ(x)
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Proof of Aronzsajn’s theorem

If K is p.d. over a set X then it is the r.k. of a Hilbert space
H ⊂ RX .

Let the mapping Φ : X → H defined by:

∀x ∈ X , Φ(x) = Kx .

By the reproducing property we have:

∀ (x, y) ∈ X 2, ⟨Φ(x),Φ(y)⟩H = ⟨Kx,Ky⟩H = K (x, y) . □

X •
•

•
• HΦ

• •
•

•

x Φ(x)
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The linear kernel

Take X = Rd and the linear kernel:

K (x, y) = ⟨x, y⟩Rd .

Theorem

The RKHS of the linear kernel is the set of linear functions of the form

fw (x) = ⟨w, x⟩Rd for w ∈ Rd ,

endowed with the inner product

∀w, v ∈ Rd , ⟨fw, fv⟩H = ⟨w, v⟩Rd

and corresponding norm

∀w ∈ Rd , ∥ fw ∥H = ∥w ∥2 .
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Proof

The set H of functions described in the theorem is the dual of Rd , hence
it is a Hilbert space:

H =
{
fw(x) = ⟨w, x⟩Rd : w ∈ Rd

}
.

H contains all functions of the form Kw : x 7→ ⟨w, x⟩Rd .

For every x in Rd , and fw in H,

fw(x) = ⟨w, x⟩Rd = ⟨fw,Kx⟩H .

H is thus the RKHS of the linear kernel.
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The polynomial kernel

Let us find the RKHS of the polynomial kernel of degree 2:

∀x, y ∈ Rd , K (x, y) = ⟨x, y⟩2Rd =
(
x⊤y

)2

First step: Look for an inner-product.

K (x, y) = trace
(
x⊤y x⊤y

)

= trace
(
y⊤x x⊤y

)

= trace
(
xx⊤yy⊤

)

=
〈
xx⊤, yy⊤

〉
F
,

where F is the Froebenius norm for matrices in Rd×d . Note that we have
proven here that K is p.d.
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The polynomial kernel

Second step: propose a candidate RKHS.
We know that H contains all the functions

f (x) =
∑

i

aiK (xi , x) =
∑

i

ai

〈
xix

⊤
i , xx

⊤
〉
F
=

〈∑

i

aixix
⊤
i , xx

⊤

〉

F

.

Any symmetric matrix in Rd×d may be decomposed as
∑

i aixix
⊤
i . Our

candidate RKHS H will be the set of quadratic functions

fS(x) =
〈
S, xx⊤

〉
F
= x⊤Sx for S ∈ Sd×d ,

where Sd×d is the set of symmetric1 matrices in Rd×d , endowed with
the inner-product ⟨fS1 , fS2⟩H = ⟨S1,S2⟩F.

1Why is it important?
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The polynomial kernel

Third step: check that the candidate is a Hilbert space.
This step is trivial in the present case since it is easy to see that H a
Euclidean space, isomorphic to Sd×d by Φ : S 7→ fS. Sometimes, things
are not so simple and we need to prove the completeness explicitly.

Fourth step: check that H is the RKHS.
1 H contains all the functions Kx : t 7→ K (x, t) =

〈
xx⊤, tt⊤

〉
F
.

2 For all fS in H and x in X ,
fS(x) =

〈
S, xx⊤

〉
F
= ⟨fS, fxx⊤⟩H = ⟨fS,Kx⟩H .

□

Remark

All points x in X are mapped to a rank-one matrix xx⊤, hence to a
function Kx = fxx⊤ in H. However, most of points in H do not admit a
pre-image (why?).

Exercise: what is the RKHS of the general polynomial kernel?
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Combining kernels

Theorem

If K1 and K2 are p.d. kernels, then:

K1 + K2,

K1K2, and

cK1, for c ≥ 0,

are also p.d. kernels

If (Ki )i≥1 is a sequence of p.d. kernels that converges pointwisely to
a function K :

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= lim

n→∞
Ki

(
x, x′

)
,

then K is also a p.d. kernel.

Proof: for K1K2, see next slide; otherwise, left as exercise
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Proof for K1K2 is p.d.

Proof.

Consider n points in X and the corresponding n × n p.s.d. kernel
matrices K1 and K2. As p.s.d. matrices, they admit factorizations
K1 = X⊤X and K2 = Y⊤Y. Then,

[K]ij = [K1]ij [K2]ij

= trace
(
(x⊤i xj)(y

⊤
j yi )

)

= trace
(
(yix

⊤
i )(xjy

⊤
j )
)

=
〈
xiy

⊤
i , xjy

⊤
j

〉
F
.

= ⟨zi , zj⟩Rn2 ,

where the xi ’s and the yi ’s are the columns of X and Y, respectively and
zi = vec(xiy

⊤
i ). Thus, K is p.s.d. and K = K1K2 is a p.d. kernel.
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Examples

Theorem

If K is a kernel, then eK is a kernel too.

Proof:

eK(x,x′) = lim
n→+∞

n∑

i=0

K (x, x′)i

i !
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Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x , x ′) = 1
1−xx ′

X = N, K (x , x ′) = 2x+x ′

X = N, K (x , x ′) = 2xx
′

X = R+, K (x , x ′) = log (1 + xx ′)

X = R, K (x , x ′) = exp
(
−|x − x ′|2

)

X = R, K (x , x ′) = cos (x + x ′)

X = R, K (x , x ′) = cos (x − x ′)

X = R+, K (x , x ′) = min(x , x ′)

X = R+, K (x , x ′) = max(x , x ′)

X = R+, K (x , x ′) = min(x , x ′)/max(x , x ′)

X = N, K (x , x ′) = GCD (x , x ′)

X = N, K (x , x ′) = LCM (x , x ′)

X = N, K (x , x ′) = GCD (x , x ′) /LCM (x , x ′)
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Remember the RKHS of the linear kernel





Klin (x, x
′) = x⊤x′ .

f (x) = w⊤x ,

∥ f ∥H = ∥w ∥2 .

||f||=1||f||=2 ||f||=0.5
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Smoothness functional

A simple inequality

By Cauchy-Schwarz we have, for any function f ∈ H and any two
points x, x′ ∈ X :

∣∣ f (x)− f
(
x′
) ∣∣ = | ⟨f ,Kx − Kx′⟩H |
≤ ∥ f ∥H × ∥Kx − Kx′ ∥H
= ∥ f ∥H × dK

(
x, x′

)
.

The norm of a function in the RKHS controls how fast the function
varies over X with respect to the geometry defined by the kernel
(Lipschitz with constant ∥ f ∥H).

Important message

Small norm =⇒ slow variations.
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Kernels and RKHS: Summary

P.d. kernels can be thought of as inner product after embedding the
data space X in some Hilbert space. As such a p.d. kernel defines a
metric on X .
A realization of this embedding is the RKHS, valid without
restriction on the space X nor on the kernel.

The RKHS is a space of functions over X . The norm of a function
in the RKHS is related to its degree of smoothness w.r.t. the metric
defined by the kernel on X .
We will now see some applications of kernels and RKHS in statistics,
before coming back to the problem of choosing (and eventually
designing) the kernel.
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Part 2

Kernel tricks
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Motivations

Two theoretical results underpin a family of powerful algorithms for data
analysis using p.d. kernels, collectively known as kernel methods:

The kernel trick, based on the representation of p.d. kernels as inner
products;

The representer theorem, based on some properties of the
regularization functional defined by the RKHS norm.
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Motivation from supervised learning

For instance, in supervised learning, the goal is to learn a prediction
function f : X → Y given labeled training data (xi , yi )i=1,...,n with xi
in X , and yi in Y:

min
f ∈F

1

n

n∑

i=1

L(yi , f (xi ))

︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f )︸ ︷︷ ︸
regularization

.

(Vapnik, 1995)...

55 / 785



Motivation from supervised learning

For instance, in supervised learning, the goal is to learn a prediction
function f : X → Y given labeled training data (xi , yi )i=1,...,n with xi
in X , and yi in Y:

min
f ∈F

1

n

n∑

i=1

L(yi , f (xi ))

︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f )︸ ︷︷ ︸
regularization

.

The labels yi are, for instance, in

{−1,+1} for binary classification problems.

{1, . . . ,K} for multi-class classification problems.

R for regression problems.

Rk for multivariate regression problems.
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Motivation from supervised learning

For instance, in supervised learning, the goal is to learn a prediction
function f : X → Y given labeled training data (xi , yi )i=1,...,n with xi
in X , and yi in Y:

min
f ∈F

1

n

n∑

i=1

L(yi , f (xi ))

︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f )︸ ︷︷ ︸
regularization

.

Example with linear models: logistic regression, etc.

assume there exists a linear relation between y and features x in Rp.

f (x) = w⊤x+ b is parametrized by w, b in Rp+1;

L is often a convex loss function;

Ω(f ) is often the squared ℓ2-norm ∥w∥2.
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Motivation from supervised learning

min
f ∈H

1

n

n∑

i=1

L(yi , f (xi )) + λ∥f ∥2H.

Kernel methods allow you to map data x in X to a Hilbert space
and work with linear forms:

Φ : X → H and f (x) = ⟨Φ(x), f ⟩H.
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Motivation from supervised learning

min
f ∈H

1

n

n∑

i=1

L(yi , f (xi )) + λ∥f ∥2H.

First purpose: embed data in a vectorial space where

many geometrical operations exist (angle computation, projection
on linear subspaces, definition of barycenters....).

one may learn potentially rich infinite-dimensional models.

regularization is natural and theoretically grounded.

The principle is generic and does not assume anything about the nature
of the set X (vectors, sets, graphs, sequences).
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Motivation from supervised learning

Second purpose: unhappy with the current Euclidean structure?

lift data to a higher-dimensional space with nicer properties (e.g.,
linear separability, clustering structure).

then, the linear form f (x) = ⟨Φ(x), f ⟩H in H may correspond to a
non-linear model in X .

2R

x1

x2

x1

x2

2
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The kernel trick

Proposition

Any algorithm to process finite-dimensional vectors that can be expressed
only in terms of pairwise inner products can be applied to potentially
infinite-dimensional vectors in the feature space of a p.d. kernel by
replacing each inner product evaluation by a kernel evaluation.

Remarks:

The proof of this proposition is trivial, because the kernel is exactly
the inner product in the feature space.

This trick has huge practical applications.

Vectors in the feature space are only manipulated implicitly, through
pairwise inner products.
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Example 1: computing distances in the feature space

φ
X F

x1

x2

x1

x2φ(     )

φ(    )d(x1,x2)

dK (x1, x2)
2 = ∥Φ (x1)− Φ (x2) ∥2H
= ⟨Φ (x1)− Φ (x2) ,Φ (x1)− Φ (x2)⟩H
= ⟨Φ (x1) ,Φ (x1)⟩H + ⟨Φ (x2) ,Φ (x2)⟩H − 2 ⟨Φ (x1) ,Φ (x2)⟩H

dK (x1, x2)
2 = K (x1, x1) + K (x2, x2)− 2K (x1, x2)
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Distance for the Gaussian kernel

The Gaussian kernel with
bandwidth σ on Rd is:

K (x, y) = e−
∥ x−y ∥2

2σ2 ,

K (x, x) = 1 = ∥Φ (x) ∥2H, so all
points are on the unit sphere in the
feature space.

The distance between the images
of two points x and y in the feature
space is given by:

dK (x, y) =

√
2

[
1− e−

∥ x−y ∥2
2σ2

]

−4 −2 0 2 4

0.
0

0.
4

0.
8

1.
2

||x−y||

d(
x,

y)
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Example 2: distance between a point and a set

Problem

Let S = (x1, · · · , xn) be a finite set of points in X .
How to define and compute the similarity between any point x in X
and the set S?

A solution:

Map all points to the feature space.

Summarize S by the barycenter of the points:

µ :=
1

n

n∑

i=1

Φ (xi ) .

Define the distance between x and S by:

dK (x,S) := ∥Φ (x)− µ ∥H .
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Computation

φ
X F

m

dK (x,S) =
∥∥∥∥∥Φ (x)− 1

n

n∑

i=1

Φ(xi )

∥∥∥∥∥
H

=

√√√√K (x, x)− 2

n

n∑

i=1

K (x, xi ) +
1

n2

n∑

i=1

n∑

j=1

K (xi , xj).

Remark

The barycentre µ only exists in the feature space in general: it does not
necessarily have a pre-image xµ such that Φ

(
xµ
)
= µ.
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1D illustration

S = {2, 3}
Plot f (x) = d(x ,S)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0
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1
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2

2.5

x

d(
x,

S
)

K (x , y) = xy .

(linear)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

x
d(

x,
S

)

K (x , y) = e−
(x−y)2

2σ2 .

with σ = 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

x

d(
x,

S
)

K (x , y) = e−
(x−y)2

2σ2 .

with σ = 0.2.

Remarks

for the linear kernel, H = R, µ = 2.5 and d(x ,S) = |x − µ|.
for the Gaussian kernel d(x ,S) =

√
C − 2

n

∑n
i=1 K (xi , x).
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1D illustration
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2D illustration

S = {(1, 1)′, (1, 2)′, (2, 2)′}
Plot f (x) = d(x,S)
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2σ2 .

with σ = 0.2.

Remark

as before, the barycenter µ in H (which is a single point in H) may
carry a lot of information about the training data.
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Basic application in discrimination

S1 = {(1, 1)′, (1, 2)′} and S2 = {(1, 3)′, (2, 2)′}
Plot f (x) = d (x,S1)2 − d (x,S2)2
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Example 3: Centering data in the feature space

Problem

Let S = (x1, · · · , xn) be a finite set of points in X endowed with a
p.d. kernel K . Let K be their n× n Gram matrix: [K]ij = K (xi , xj) .

Let µ = 1/n
∑n

i=1Φ (xi ) their barycenter, and ui = Φ(xi )− µ for
i = 1, . . . , n be centered data in H.
How to compute the centered Gram matrix [Kc ]i ,j = ⟨ui ,uj⟩H?

φ
X F

m
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Computation

A direct computation gives, for 0 ≤ i , j ≤ n:

Kc
i ,j = ⟨Φ (xi )− µ,Φ (xj)− µ⟩H

= ⟨Φ (xi ) ,Φ (xj)⟩H − ⟨µ,Φ (xi ) + Φ (xj)⟩H + ⟨µ,µ⟩H

= Ki ,j −
1

n

n∑

k=1

(Ki ,k +Kj ,k) +
1

n2

n∑

k,l=1

Kk,l .

This can be rewritten in matricial form:

Kc = K−UK−KU+UKU = (I−U)K (I−U) ,

where Ui ,j = 1/n for 1 ≤ i , j ≤ n.
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Kernel trick Summary

The kernel trick is a trivial statement with important applications.

It can be used to obtain nonlinear versions of well-known linear
algorithms, e.g., by replacing the classical inner product by a
Gaussian kernel.

It can be used to apply classical algorithms to non vectorial data
(e.g., strings, graphs) by again replacing the classical inner product
by a valid kernel for the data.

It allows in some cases to embed the initial space to a larger feature
space and involve points in the feature space with no pre-image
(e.g., barycenter).
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Motivation

An RKHS is a space of (potentially nonlinear) functions, and ∥ f ∥H
measures the smoothness of f .

Given a set of data (xi ∈ X , yi ∈ R)i=1,...,n, a natural way to
estimate a regression function f : X → R is to solve something like:

min
f ∈H

1

n

n∑

i=1

ℓ(yi , f (xi ))

︸ ︷︷ ︸
empirical risk, data fit

+ λ∥f ∥2H︸ ︷︷ ︸
regularization

. (1)

for a loss function ℓ such as ℓ(y , t) = (y − t)2.

How to solve in practice this problem, potentially in infinite
dimension?
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The Theorem

Representer Theorem

Let X be a set endowed with a p.d. kernel K , H the corresponding
RKHS, and S = {x1, · · · , xn} ⊆ X a finite set of points in X .
Let Ψ : Rn+1 → R be a function of n + 1 variables, strictly
increasing with respect to the last variable.

Then, any solution to the optimization problem:

min
f ∈H

Ψ(f (x1) , · · · , f (xn) , ∥ f ∥H) ,

admits a representation of the form:

∀x ∈ X , f (x) =
n∑

i=1

αiK (xi , x) =
n∑

i=1

αiKxi (x) .

In other words, the solution lives in a finite-dimensional subspace:

f ∈ Span(Kx1 , . . . ,Kxn).
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Proof (1/2)

Let ξ (f ) be the functional that is minimized in the statement of the
representer theorem, and HS the linear span in H of the vectors Kxi :

HS =

{
f ∈ H : f (x) =

n∑

i=1

αiK (xi , x) , (α1, · · · , αn) ∈ Rn

}
.

HS is a finite-dimensional subspace, therefore any function f ∈ H
can be uniquely decomposed as:

f = fS + f⊥ ,

with fS ∈ HS and f⊥ ⊥ HS (by orthogonal projection).
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Proof (2/2)

H being a RKHS it holds that:

∀i = 1, · · · , n, f⊥ (xi ) = ⟨f⊥,Kxi ⟩H = 0 ,

because Kxi = K (xi , .) ∈ HS and f⊥ ⊥ HS , therefore:

∀i = 1, · · · , n, f (xi ) = fS (xi ) .

Pythagoras’ theorem in H then shows that:

∥ f ∥2H = ∥ fS ∥2H + ∥ f⊥ ∥2H .

As a consequence, ξ (f ) ≥ ξ (fS) , with equality if and only if
∥ f⊥ ∥H = 0. The minimum of Ψ is therefore necessarily in HS .

□
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Remarks

Often the function Ψ has the form:

Ψ (f (x1) , · · · , f (xn) , ∥ f ∥H) = c (f (x1) , · · · , f (xn)) + λΩ (∥ f ∥H)

where c(.) measures the “fit” of f to a given problem (regression,
classification, dimension reduction, ...) and Ω is strictly increasing. This
formulation has two important consequences:

Theoretically, the minimization will enforce the norm ∥ f ∥H to be
“small”, which can be beneficial by ensuring a sufficient level of
smoothness for the solution (regularization effect).

Practically, we know by the representer theorem that the solution
lives in a subspace of dimension n, which can lead to efficient
algorithms although the RKHS itself can be of infinite dimension.
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Practical use of the representer theorem (1/2)

When the representer theorem holds, we know that we can look for
a solution of the form

f (x) =
n∑

i=1

αiK (xi , x) , for some α ∈ Rn.

For any j = 1, . . . , n, we have

f (xj) =
n∑

i=1

αiK (xi , xj) = [Kα]j .

Furthermore,

∥ f ∥2H =

∥∥∥∥∥
n∑

i=1

αiKxi

∥∥∥∥∥

2

H

=
n∑

i=1

n∑

j=1

αiαjK (xi , xj) = α⊤Kα.
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Practical use of the representer theorem (2/2)

Therefore, a problem of the form

min
f ∈H

Ψ
(
f (x1) , · · · , f (xn) , ∥ f ∥2H

)

is equivalent to the following n-dimensional optimization problem:

min
α∈Rn

Ψ
(
[Kα]1, · · · , [Kα]n,α

⊤Kα
)
.

This problem can usually be solved analytically or by numerical
methods; we will see many examples in the next sections.
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Remarks

Dual interpretations of kernel methods

Most kernel methods have two complementary interpretations:

A geometric interpretation in the feature space, thanks to the kernel
trick. Even when the feature space is “large”, most kernel methods
work in the linear span of the embeddings of the points available.

A functional interpretation, often as an optimization problem over
(subsets of) the RKHS associated to the kernel.

The representer theorem has important consequences, but it is in fact
rather trivial. We are looking for a function f in H such that for all x
in X , f (x) = ⟨Kx, f ⟩H. The part f ⊥ that is orthogonal to the Kxi ’s is
thus “useless” to explain the training data.
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Part 3

Kernel Methods
Supervised Learning
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Supervised learning

Definition

Given:

X , a space of inputs,

Y, a space of outputs,

Sn = (xi , yi )i=1,...,n, a training set of (input,output) pairs,

the supervised learning problem is to estimate a function h : X → Y to
predict the output for any future input.

Depending on the nature of the output, this covers:

Regression when Y = R;
Classification when Y = {−1, 1} or any set of two labels;

Structured output regression or classification when Y is more
general.
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Example: regression

Task: predict the capacity of a small molecule to inhibit a drug target
X = set of molecular structures (graphs?)
Y = R
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Example: classification

Task: recognize if an image is a dog or a cat
X = set of images (Rd)
Y = {cat,dog}
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Example: classification

Task: recognize if an image is a dog or a cat
X = set of images (Rd)
Y = {cat,dog}
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Example: structured output

Task: translate from Japanese to French
X = finite-length strings of japanese characters
Y = finite-length strings of french characters

84 / 785



Supervised learning with kernels: general principles

1 Express h : X → Y using a real-valued function f : Z → R:
regression Y = R:

h(x) = f (x) with f : X → R (Z = X )
classification Y = {−1, 1}:

h(x) = sign(f (x)) with f : X → R (Z = X )
structured output:

h(x) = argmax
y∈Y

f (x, y) with f : X × Y → R (Z = X × Y)

2 Define an empirical risk function Rn(f ) to assess how ”good” a
candidate function f is on the training set Sn, typically the average
of a loss:

Rn(f ) :=
1

n

n∑

i=1

ℓ (f (xi ), yi )

3 Define a p.d. kernel on Z and solve

min
f ∈H,∥ f ∥H≤B

Rn (f ) or min
f ∈H

Rn (f ) + λ∥ f ∥2H
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Remarks

min
f ∈H

1

n

n∑

i=1

ℓ (f (xi ), yi )

︸ ︷︷ ︸
empirical risk, data fit

+ λ∥ f ∥2H︸ ︷︷ ︸
regularization

.

Regularization is important, particularly in high dimension, to
prevent overfitting

When Z = Rd and K is the linear kernel, f = fw is a linear model
and the regularization is ∥w∥2
Using more general spaces Z and kernels K allows to

learn non-linear functions over a functional space endowed with a
natural regularization (remember, small norm in RKHS = ”smooth”)
learn functions over non-vectorial data, such as strings and graphs

We will now see a few methods in more details
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Regression

Setup

X set of inputs

Y = R real-valued outputs

Sn = (xi , yi )i=1,...,n ∈ (X × R)n a training set of n pairs

Goal = find a function f : X → R to predict y by f (x)
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Least-square regression over a general functional space

Let us quantify the error if f predicts f (x) instead of y by the
squared error:

ℓ (f (x) , y) = (y − f (x))2

Fix a set of functions H.
Least-square regression amounts to finding the function in H with
the smallest empirical risk, called in this case the mean squared error
(MSE):

f̂ ∈ argmin
f ∈H

1

n

n∑

i=1

(yi − f (xi ))
2

Issues: unstable (especially in large dimensions), overfitting if H is
too “large”.
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Kernel ridge regression (KRR)

Let us now consider a RKHS H, associated to a p.d. kernel K on X .
KRR is obtained by regularizing the MSE criterion by the RKHS
norm:

f̂ = argmin
f ∈H

1

n

n∑

i=1

(yi − f (xi ))
2 + λ∥ f ∥2H (2)

1st effect = prevent overfitting by penalizing non-smooth functions.

By the representer theorem, any solution of (2) can be expanded as

f̂ (x) =
n∑

i=1

αiK (xi , x) .

2nd effect = simplifying the solution.
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Solving KRR

Let y = (y1, . . . , yn)
⊤ ∈ Rn

Let α = (α1, . . . , αn)
⊤ ∈ Rn

Let K be the n × n Gram matrix: Kij = K (xi , xj)

We can then write:

(
f̂ (x1) , . . . , f̂ (xn)

)⊤
= Kα

The following holds as usual:

∥ f̂ ∥2H = α⊤Kα

The KRR problem (2) is therefore equivalent to:

argmin
α∈Rn

1

n
(Kα− y)⊤ (Kα− y) + λα⊤Kα
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Solving KRR

argmin
α∈Rn

1

n
(Kα− y)⊤ (Kα− y) + λα⊤Kα

This is a convex and differentiable function of α. Its minimum can
therefore be found by setting the gradient in α to zero:

0 =
2

n
K (Kα− y) + 2λKα

= K [(K+ λnI)α− y]

For λ > 0, K+ λnI is invertible (because K is positive semidefinite)
so one solution is to take:

α = (K+ λnI)−1 y.
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Example (KRR with Gaussian RBF kernel)

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
●
●
●●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●
●

●

●

●

●●
●

●

●

●

●

●

0 2 4 6 8 10

−
1

0
1

2

x

y

93 / 785



Example (KRR with Gaussian RBF kernel)

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
●
●
●●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●
●

●

●

●

●●
●

●

●

●

●

●

0 2 4 6 8 10

−
1

0
1

2

lambda = 1000

x

y

93 / 785



Example (KRR with Gaussian RBF kernel)

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
●
●
●●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●
●

●

●

●

●●
●

●

●

●

●

●

0 2 4 6 8 10

−
1

0
1

2

lambda = 100

x

y

93 / 785



Example (KRR with Gaussian RBF kernel)
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Example (KRR with Gaussian RBF kernel)
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Example (KRR with Gaussian RBF kernel)
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Example (KRR with Gaussian RBF kernel)
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Example (KRR with Gaussian RBF kernel)
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Example (KRR with Gaussian RBF kernel)
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Example (KRR with Gaussian RBF kernel)
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Example (KRR with Gaussian RBF kernel)
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Example (KRR with Gaussian RBF kernel)
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Remark: uniqueness of the solution

Let us find all α’s that solve

K [(K+ λnI)α− y] = 0

K being a symmetric matrix, it can be diagonalized in an
orthonormal basis and Ker(K) ⊥ Im(K).
In this basis we see that (K+ λnI)−1 leaves Im(K) and Ker(K)
invariant.
The problem is therefore equivalent to:

(K+ λnI)α− y ∈ Ker(K)

⇔α− (K+ λnI)−1 y ∈ Ker(K)

⇔α = (K+ λnI)−1 y + ϵ, with Kϵ = 0.

However, if α′ = α+ ϵ with Kϵ = 0, then:

∥ f − f ′ ∥2H =
(
α−α′)⊤K

(
α−α′) = 0,

therefore f = f ′. KRR has a unique solution f ∈ H, which can
possibly be expressed by several α’s if K is singular.
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Remark: link with ”standard” ridge regression

Take X = Rd and the linear kernel K (x, x′) = x⊤x′

Let X = (x1, . . . , xn)
⊤ the n × d data matrix

The kernel matrix is then K = XX⊤

The function learned by KRR in that case is linear:

fKRR (x) = w⊤
KRRx

with

wKRR =
n∑

i=1

αixi = X⊤α = X⊤
(
XX⊤ + λnI

)−1
y

95 / 785



Remark: link with ”standard” ridge regression

On the other hand, the RKHS is the set of linear functions
f (x) = w⊤x and the RKHS norm is ∥ f ∥H = ∥w ∥
We can therefore directly rewrite the original KRR problem (2) as

arg min
w∈Rd

1

n

n∑

i=1

(
yi −w⊤xi

)2
+ λ∥w ∥2

= arg min
w∈Rd

1

n
(y − Xw)⊤ (y − Xw) + λw⊤w

Setting the gradient to 0 gives the solution:

wRR =
(
X⊤X+ λnI

)−1
X⊤y

Oups, looks different from wKRR = X⊤ (XX⊤ + λnI
)−1

y ..?
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Remark: link with ”standard” ridge regression

Matrix inversion lemma

For any matrices B and C , and γ > 0 the following holds (when it makes
sense):

B (CB + γI)−1 = (BC + γI)−1 B

We deduce that (of course...):

wRR =
(
X⊤X+ λnI

)−1

︸ ︷︷ ︸
d×d

X⊤y = X⊤
(
XX⊤ + λnI

)−1

︸ ︷︷ ︸
n×n

y = wKRR

Computationally, inverting the matrix is the expensive part, which
suggest to implement:

KRR when d > n (high dimension)

RR when d < n (many points)
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Robust regression

The squared error ℓ(t, y) = (t − y)2 is arbitrary and sensitive to
outliers
Many other loss functions exist for regression, e.g.:

Any loss function leads to a valid kernel method, which is usually
solved by numerical optimization as there is usually no analytical
solution beyond the squared error.
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Weighted regression

Given weights W1, . . . ,Wn ∈ R, a variant of ridge regression is to
weight differently the error at different points:

argmin
f ∈H

1

n

n∑

i=1

Wi (yi − f (xi ))
2 + λ∥ f ∥2H

By the representer theorem the solution is f (x) =
∑n

i=1 αiK (xi , x)
where α solves, with W = diag (W1, . . . ,Wn):

argmin
α∈Rn

1

n
(Kα− y)⊤W (Kα− y) + λα⊤Kα
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Weighted regression

Setting the gradient to zero gives

0 =
2

n
(KWKα−KWy) + 2λKα

=
2

n
KW

1
2

[(
W

1
2KW

1
2 + nλI

)
W− 1

2α−W
1
2 y
]

A solution is therefore given by

(
W

1
2KW

1
2 + nλI

)
W− 1

2α−W
1
2 y = 0

therefore

α = W
1
2

(
W

1
2KW

1
2 + nλI

)−1
W

1
2Y
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Outline

1 Kernels and RKHS

2 Kernel tricks

3 Kernel Methods: Supervised Learning
Kernel ridge regression
Kernel logistic regression
Large-margin classifiers
Interlude: convex optimization and duality
Support vector machines

4 Kernel Methods: Unsupervised Learning

5 The Kernel Jungle

6 Characterizing probabilities with kernels

7 Open Problems and Research Topics
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Binary classification

Setup

X set of inputs

Y = {−1, 1} binary outputs

Sn = (xi , yi )i=1,...,n ∈ (X × Y)n a training set of n pairs

Goal = find a function f : X → R to predict y by sign(f (x))
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The 0/1 loss

The 0/1 loss measures if a prediction is correct or not:

ℓ0/1 (f (x), y)) = 1 (yf (x) < 0) =

{
0 if y = sign (f (x))

1 otherwise.

It is then tempting to learn f by solving:

min
f ∈H

1

n

n∑

i=1

ℓ0/1 (f (xi ) , yi )

︸ ︷︷ ︸
misclassification rate

+ λ∥ f ∥2H︸ ︷︷ ︸
regularization

However:

The problem is non-smooth, and typically NP-hard to solve
The regularization has no effect since the 0/1 loss is invariant by
scaling of f
In fact, no function achieves the minimum when λ > 0 (why?)
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The logistic loss

An alternative is to define a probabilistic model of y parametrized by
f (x), e.g.:

∀y ∈ {−1, 1} , p (y | f (x)) = 1

1 + e−yf (x)
= σ (yf (x))

−5 0 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sigma(u)
sigma(−u)

The logistic loss is the negative conditional likelihood:

ℓlogistic (f (x), y) = − ln p (y | f (x)) = ln
(
1 + e−yf (x)

)
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Kernel logistic regression (KLR)

f̂ = argmin
f ∈H

1

n

n∑

i=1

ℓlogistic (f (xi ), yi ) +
λ

2
∥ f ∥2H

= argmin
f ∈H

1

n

n∑

i=1

ln
(
1 + e−yi f (xi )

)
+
λ

2
∥ f ∥2H

Can be interpreted as a regularized conditional maximum likelihood
estimator

No explicit solution, but smooth convex optimization problem that
can be solved numerically
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Solving KLR

By the representer theorem, any solution of KLR can be expanded as

f̂ (x) =
n∑

i=1

αiK (xi , x)

and as always we have:

(
f̂ (x1) , . . . , f̂ (xn)

)⊤
= Kα and ∥ f̂ ∥2H = α⊤Kα

To find α we therefore need to solve:

min
α∈Rn

1

n

n∑

i=1

ln
(
1 + e−yi [Kα]i

)
+
λ

2
α⊤Kα
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Technical facts
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sigma(u)
sigma(−u)

Sigmoid:

σ(u) = 1
1+e−u

σ(−u) = 1− σ(u)
σ′(u) = σ(u)σ(−u) ≥ 0
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8

logistic loss(u)

Logistic loss:

ℓlogistic(u) = ln (1 + e−u)

ℓ′logistic(u) = −σ(−u)
ℓ′′logistic(u) = σ(u)σ(−u) ≥ 0
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Back to KLR

min
α∈Rn

J (α) =
1

n

n∑

i=1

ℓlogistic (yi [Kα]i ) +
λ

2
α⊤Kα

This is a smooth convex optimization problem, that can be solved by
many numerical methods. Let us explicit one of them, Newton’s method,
which iteratively approximates J by a quadratic function and solves the
quadratic problem.
The quadratic approximation near a point α0 is the function:

Jq(α) = J(α0) + (α−α0)
⊤∇J (α0) +

1

2
(α−α0)

⊤∇2J (α0) (α−α0)

Let us compute the different terms...
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Computing the quadratic approximation

∂J

∂αj
=

1

n

n∑

i=1

ℓ′logistic (yi [Kα]i )︸ ︷︷ ︸
Pi (α)

yiKij + λ[Kα]j

therefore

∇J (α) =
1

n
KP (α) y + λKα

where P (α) = diag (P1(α), . . . ,Pn(α)).

∂2J

∂αj∂αl
=

1

n

n∑

i=1

ℓ′′logistic (yi [Kα]i )︸ ︷︷ ︸
Wi (α)

yiKijyiKil + λKjl

therefore

∇2J (α) =
1

n
KW (α)K+ λK

where W (α) = diag (W1(α), . . . ,Wn(α)).
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Computing the quadratic approximation

Jq(α) = J(α0) + (α−α0)
⊤∇J (α0) +

1

2
(α−α0)

⊤∇2J (α0) (α−α0)

Terms that depend on α, with P = P (α0) and W = W (α0):

α⊤∇J (α0) =
1
nα

⊤KPy + λα⊤Kα0

1
2α

⊤∇2J (α0)α = 1
2nα

⊤KWKα+ λ
2α

⊤Kα

−α⊤∇2J (α0)α0 = − 1
nα

⊤KWKα0 − λα⊤Kα0

Putting it all together:

2Jq(α) = −2

n
α⊤KW

(
Kα0 −W−1Py

)
︸ ︷︷ ︸

:=z

+
1

n
α⊤KWKα+ λα⊤Kα+ C

=
1

n
(Kα− z)⊤W (Kα− z) + λα⊤Kα+ C

This is a standard weighted kernel ridge regression (WKRR) problem!
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Solving KLR by IRLS

In summary, one way to solve KLR is to iteratively solve a WKRR
problem until convergence:

αt+1 ← solveWKRR(K,Wt , zt)

where we update Wt and zt from αt as follows ( for i = 1, . . . , n):

mi ← [Kαt ]i

Pt
i ← ℓ′logistic(yimi ) = −σ(−yimi )

W t
i ← ℓ′′logistic(yimi ) = σ(mi )σ(−mi )

z ti ← mi − Pt
i yi/W

t
i = mi + yi/σ (yimi )

This is the kernelized version of the famous iteratively reweighted
least-square (IRLS) method to solve the standard linear logistic
regression.
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Loss functions for classifications

We already saw two loss functions for binary classification problems

The 0/1 loss ℓ0/1 (f (x), y) = 1 (yf (x) < 0)

The logistic loss ℓlogistic (f (x), y) = ln
(
1 + e−yf (x)

)

In both cases, the loss is a function of the margin defined as follows

Definition

In binary classification (Y = {−1, 1}), the margin of the function f for a
pair (x, y) is:

yf (x) .

In both cases the loss is a decreasing function of the margin, i.e.,

ℓ (f (x), y) = φ (yf (x)) , withφ non-increasing

What about other similar loss functions?
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Loss function examples

Method φ(u)

Kernel logistic regression log (1 + e−u)
Support vector machine (1-SVM) max (1− u, 0)

Support vector machine (2-SVM) max (1− u, 0)2

Boosting e−u
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Large-margin classifiers

Definition

Given a non-increasing function φ : R→ R+, a (kernel) large-margin
classifier is an algorithm that estimates a function f : X → R by solving

min
f ∈H

1

n

n∑

i=1

φ (yi f (xi )) + λ∥ f ∥2H

Hence, KLR is a large-margin classifier, corresponding to
φ(u) = ln (1 + e−u). Many more are possible.

Questions:

1 Can we solve the optimization problem for other φ’s?

2 Is it a good idea to optimize this objective function, if at the end of
the day we are interested in the ℓ0/1 loss, i.e., learning models that
make few errors?
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Solving large-margin classifiers

min
f ∈H

1

n

n∑

i=1

φ (yi f (xi )) + λ∥ f ∥2H

By the representer theorem, the solution of the unconstrained
problem can be expanded as:

f (x) =
n∑

i=1

αiK (xi , x) .

Plugging into the original problem we obtain the following
unconstrained and convex optimization problem in Rn:

min
α∈Rn

{
1

n

n∑

i=1

φ (yi [Kα]i ) + λα⊤Kα

}
.

When φ is convex, this can be solved using general tools for convex
optimization, or specific algorithms (e.g., for SVM, see later).
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A tiny bit of learning theory

Assumptions and notations

Let P be an (unknown) distribution on X × Y, and
η(x) = P(Y = 1 |X = x) a measurable version of the conditional
distribution of Y given X

Assume the training set Sn = (Xi ,Yi )i=1,...,n are i.i.d. random
variables according to P.
The risk of a classifier f : X → R is R(f ) = P (sign(f (X )) ̸= Y )

The Bayes risk is
R∗ = inf

f measurable
R(f )

which is attained for f ∗(x) = η(x)− 1/2

The empirical risk of a classifier f : X → R is

Rn(f ) =
1

n

n∑

i=1

1 (sign(f (Xi )) ̸= Yi )
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φ-risk

Let the empirical φ-risk be the empirical risk optimized by a
large-margin classifier:

Rn
φ(f ) =

1

n

n∑

i=1

φ (Yi f (Xi ))

It is the empirical version of the φ-risk

Rφ(f ) = E[φ (Yf (X ))]

Can we hope to have a small risk R(f ) if we focus instead on the
φ-risk Rφ(f )?
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A small φ-risk ensures a small 0/1 risk

Theorem (Bartlett et al., 2003)

Let φ : R→ R+ be convex, non-increasing, differentiable at 0 with
φ′(0) < 0. Let f : X → R measurable such that

Rφ(f ) = min
g measurable

Rφ(g) = R∗
φ .

Then
R(f ) = min

g measurable
R(g) = R∗ .

Remarks:

This tells us that, if we know P, then minimizing the φ-risk is a
good idea even if our focus is on the classification error.

The assumptions on φ can be relaxed; it works for the broader class
of classification-calibrated loss functions (Bartlett et al., 2003).

More generally, we can show that if Rφ(f )− R∗
φ is small, then

R(f )− R∗ is small too (Bartlett et al., 2003).
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A small φ-risk ensures a small 0/1 risk

Proof sketch: Show that f (x) is necessarily consistent with
η(x) = P(Y = 1 |X = x), if f minimizes Rφ, and thus minimizes R.

Condition on X = x:

Rφ(f |X = x) = E [φ (Yf (X )) |X = x] = η(x)φ (f (x)) + (1− η(x))φ (−f (x))
Rφ(−f |X = x) = E [φ (−Yf (X )) |X = x] = η(x)φ (−f (x)) + (1− η(x))φ (f (x))

Therefore:

Rφ(f |X = x)− Rφ(−f |X = x) = [2η(x)− 1]× [φ (f (x))− φ (−f (x))]

This must be a.s. ≤ 0 because Rφ(f ) ≤ Rφ(−f ), which implies:

if η(x) > 1
2 , φ (f (x)) ≤ φ (−f (x)) =⇒ f (x) ≥ 0

if η(x) < 1
2 , φ (f (x)) ≥ φ (−f (x)) =⇒ f (x) ≤ 0

These inequalities are in fact strict thanks to the assumptions we made on φ
(left as exercice). □
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Empirical risk minimization (ERM)

To find a function with a small φ-risk, the following is a good candidate:

Definition

The ERM estimator on a functional class F is the solution (when it
exists) of:

f̂n = argmin
f ∈F

Rn
φ(f ) .

Questions

Is Rn
φ(f ) a good estimate of the true risk Rφ(f )?

Is Rφ(f̂n) small?

Rφ(f̂n)− R⋆
φ = Rφ(f̂n)− inf

f ∈F
Rφ(f )

︸ ︷︷ ︸
estimation error

+ inf
f ∈F

Rφ(f )− R⋆
φ

︸ ︷︷ ︸
approximation error

.
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Class capacity

Motivations

The ERM principle gives a good solution if Rφ

(
f̂n
)
is similar to the

minimum achievable risk inff ∈F Rφ(f ).

This can be ensured if F is not “too large”.

We need a measure of the “capacity” of F .

Definition: Rademacher complexity

The Rademacher complexity of a class of functions F is:

Radn (F) = EX ,σ

[
sup
f ∈F

∣∣∣∣∣
2

n

n∑

i=1

σi f (Xi )

∣∣∣∣∣

]
,

where the expectation is over (Xi )i=1,...,n and the independent uniform
{±1}-valued (Rademacher) random variables (σi )i=1,...,n.
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Basic learning bounds

Theorem

Suppose φ is Lipschitz with constant Lφ:

∀u, u′ ∈ R,
∣∣φ(u)− φ(u′)

∣∣ ≤ Lφ
∣∣ u − u′

∣∣ .

Then the φ-risk of the ERM estimator satisfies (on average over the
sampling of training set)

ESnRφ

(
f̂n
)
− R∗

φ
︸ ︷︷ ︸

Excess φ-risk

≤ 4LφRadn (F)︸ ︷︷ ︸
Estimation error

+ inf
f ∈F

Rφ(f )− R∗
φ

︸ ︷︷ ︸
Approximation error

This quantifies a trade-off between:

F ”large” = overfitting (approximation error small, estimation error
large)

F ”small” = underfitting (estimation error small, approximation
error large)
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ERM in RKHS balls

Principle

Assume X is endowed with a p.d. kernel.

We consider the ball of radius B in the RKHS as function class for
the ERM:

FB = {f ∈ H : ∥ f ∥H ≤ B} .

Theorem (capacity control of RKHS balls)

Radn (FB) ≤
2B
√

EK (X ,X )√
n

.
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Proof (1/2)

Radn (FB) = EX ,σ

[
sup
f∈FB

∣∣∣∣∣
2

n

n∑

i=1

σi f (Xi )

∣∣∣∣∣

]

= EX ,σ

[
sup
f∈FB

∣∣∣∣∣

〈
f ,

2

n

n∑

i=1

σiKXi

〉 ∣∣∣∣∣

]
(RKHS)

= EX ,σ

[
B∥ 2

n

n∑

i=1

σiKXi ∥H
]

(Cauchy-Schwarz)

=
2B

n
EX ,σ



√√√√∥

n∑

i=1

σiKXi ∥2H




≤ 2B

n

√√√√√EX ,σ




n∑

i,j=1

σiσjK (Xi ,Xj)


 (Jensen)

125 / 785



Proof (2/2)

But Eσ [σiσj ] is 1 if i = j , 0 otherwise. Therefore:

Radn (FB) ≤
2B

n

√√√√√EX




n∑

i ,j=1

Eσ [σiσj ]K (Xi ,Xj)




≤ 2B

n

√√√√EX

n∑

i=1

K (Xi ,Xi )

=
2B
√

EXK (X ,X )√
n

. □
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Basic learning bounds in RKHS balls

Corollary

Suppose K (X ,X ) ≤ κ2 a.s. (e.g., Gaussian kernel and κ = 1). Then the
ERM estimator in FB satisfies

ERφ

(
f̂n
)
− R∗

φ ≤
8LφκB√

n
+

[
inf

f ∈FB

Rφ(f )− R∗
φ

]
.

Remarks

B controls the trade-off between approximation and estimation error

The bound on expression error is independent of P and decreases
with n

The approximation error is harder to analyze in general

In practice, B (or λ, next slide) is tuned by cross-validation
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ERM as penalized risk minimization

ERM over FB solves the constrained minimization problem:

{
minf ∈H

1
n

∑n
i=1 φ (yi f (xi ))

subject to ∥ f ∥H ≤ B .

To make this practical we assume that φ is convex.

The problem is then a convex problem in f for which strong duality
holds. In particular f solves the problem if and only if it solves for
some dual parameter λ the unconstrained problem:

min
f ∈H

{
1

n

n∑

i=1

φ (yi f (xi )) + λ∥ f ∥2H

}
.
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Summary: large margin classifiers

min
f ∈H

{
1

n

n∑

i=1

φ (yi f (xi )) + λ∥ f ∥2H

}

φ calibrated (e.g., decreasing, φ′(0) < 0) =⇒ good proxy for
classification error

φ convex + representer theorem =⇒ efficient algorithms
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A few slides on convex duality

Strong Duality

x⋆

x ν

ν⋆

f(x), primal

q(ν), dual

b

b

b

b

Strong duality means that maxν q(ν) = minx f (x)

Strong duality holds in most “reasonable cases” for convex
optimization (to be detailed soon).
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A few slides on convex duality

Strong Duality

x⋆

x ν

ν⋆

f(x), primal

q(ν), dual

b

b

b

b

The relation between x⋆ and ν⋆ is not always known a priori.
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A few slides on convex duality

Parenthesis on duality gaps

x̃

x

ν̃

ν

f(x), primal

q(ν), dual

b

b

b

b
δ(x̃, ν̃)

The duality gap guarantees us that 0 ≤ f (x̃)− f (x⋆) ≤ δ(x̃, ν̃).
Dual problems are often obtained by Lagrangian or Fenchel duality.
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A few slides on Lagrangian duality

Setting

We consider an equality and inequality constrained optimization
problem over a variable x ∈ X :

minimize f (x)

subject to hi (x) = 0 , i = 1, . . . ,m ,

gj(x) ≤ 0 , j = 1, . . . , r ,

making no assumption of f , g and h.

Let us denote by f ⋆ the optimal value of the decision function under
the constraints, i.e., f ⋆ = f (x⋆) if the minimum is reached at a
global minimum x⋆.
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A few slides on Lagrangian duality

Lagrangian

The Lagrangian of this problem is the function L : X × Rm × Rr → R
defined by:

L (x,λ,µ) = f (x) +
m∑

i=1

λihi (x) +
r∑

j=1

µjgj(x) .

Lagrangian dual function

The Lagrange dual function g : Rm × Rr → R is:

q(λ,µ) = inf
x∈X

L (x,λ,µ)

= inf
x∈X


f (x) +

m∑

i=1

λihi (x) +
r∑

j=1

µjgj(x)


 .
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A few slides on convex Lagrangian duality

For the (primal) problem:

minimize f (x)

subject to h(x) = 0 , g(x) ≤ 0 ,

the Lagrange dual problem is:

maximize q(λ,µ)

subject to µ ≥ 0 ,

Proposition

q is concave in (λ,µ), even if the original problem is not convex.

The dual function yields lower bounds on the optimal value f ⋆ of
the original problem when µ is nonnegative:

q(λ,µ) ≤ f ⋆ , ∀λ ∈ Rm,∀µ ∈ Rr ,µ ≥ 0 .
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Proofs

Remember that

L (x,λ,µ) = f (x) +
m∑

i=1

λihi (x) +
r∑

j=1

µjgj(x) .

For each x, the function (λ,µ) 7→ L(x,λ,µ) is linear, and therefore
both convex and concave in (λ,µ). The pointwise minimum of
concave functions is concave, therefore q is concave.

Let x̄ be any feasible point, i.e., h(x̄) = 0 and g(x̄) ≤ 0. Then we
have, for any λ and µ ≥ 0:

m∑

i=1

λihi (x̄) +
r∑

i=1

µigi (x̄) ≤ 0 ,

=⇒ L(x̄,λ,µ) = f (x̄) +
m∑

i=1

λihi (x̄) +
r∑

i=1

µigi (x̄) ≤ f (x̄) ,

=⇒ q(λ,µ) = inf
x
L(x,λ,µ) ≤ L(x̄,λ,µ) ≤ f (x̄) , ∀x̄ . □
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Weak duality

Let q∗ the optimal value of the Lagrange dual problem. Each
q(λ,µ) is a lower bound for f ⋆ and by definition q⋆ is the best lower
bound that is obtained. The following weak duality inequality
therefore always hold:

q⋆ ≤ f ⋆ .

This inequality holds when q⋆ or f ⋆ are infinite. The difference
q⋆ − f ⋆ is called the optimal duality gap of the original problem.
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Strong duality

We say that strong duality holds if the optimal duality gap is zero,
i.e.:

q⋆ = f ⋆ .

If strong duality holds, then the best lower bound that can be
obtained from the Lagrange dual function is tight

Strong duality does not hold for general nonlinear problems.

It usually holds for convex problems.

Conditions that ensure strong duality for convex problems are called
constraint qualification.

in that case, we have for all feasible primal and dual points x,λ,µ,

q(λ,µ) ≤ q(λ⋆,µ⋆) = L (x⋆,λ⋆,µ⋆) = f (x⋆) ≤ f (x).
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Slater’s constraint qualification

Strong duality holds for a convex problem:

minimize f (x)

subject to gj(x) ≤ 0 , j = 1, . . . , r ,

Ax = b ,

if it is strictly feasible, i.e., there exists at least one feasible point that
satisfies:

gj(x) < 0 , j = 1, . . . , r , Ax = b .
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Remarks

Slater’s conditions also ensure that the maximum q⋆ (if > −∞) is
attained, i.e., there exists a point (λ⋆,µ⋆) with

q (λ⋆,µ⋆) = q⋆ = f ⋆

They can be sharpened. For example, strict feasibility is not required
for affine constraints.

There exist many other types of constraint qualifications
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Dual optimal pairs

Suppose that strong duality holds, x⋆ is primal optimal, (λ⋆,µ⋆) is dual
optimal. Then we have:

f (x⋆) = q (λ⋆,µ⋆)

= inf
x∈Rn



f (x) +

m∑

i=1

λ⋆i hi (x) +
r∑

j=1

µ⋆j gj(x)





≤ f (x⋆) +
m∑

i=1

λ⋆i hi (x
⋆) +

r∑

j=1

µ⋆j gj(x
⋆)

≤ f (x⋆)

Hence both inequalities are in fact equalities.
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Complimentary slackness

The first equality shows that:

L (x⋆,λ⋆,µ⋆) = inf
x∈Rn

L (x,λ⋆,µ⋆) ,

showing that x⋆ minimizes the Lagrangian at (λ⋆,µ⋆). The second
equality shows the following important property:

Complimentary slackness

Each optimal Lagrange multiplier is zero unless the corresponding
constraint is active at the optimum:

µjgj(x
⋆) = 0 , j = 1, . . . , r .
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Support vector machines (SVM)

Historically the first “kernel method” for pattern recognition, still
the most popular.

Often state-of-the-art in performance.

One particular choice of loss function (hinge loss).

Leads to a sparse solution, i.e., not all points are involved in the
decomposition (compression).

Particular algorithm for fast optimization (decomposition by
chunking methods).
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Support vector machines (SVM)

Definition

The hinge loss is the function R→ R+:

φhinge(u) = max (1− u, 0) =

{
0 if u ≥ 1,

1− u otherwise.

SVM is the corresponding large-margin classifier, which solves:

min
f ∈H

{
1

n

n∑

i=1

φhinge (yi f (xi )) + λ∥ f ∥2H

}
.

yf(x)

l(f(x),y)

1
145 / 785



Problem reformulation (1/3)

By the representer theorem, the solution satisfies

f̂ (x) =
n∑

i=1

α̂iK (xi , x) ,

where α̂ solves

min
α∈Rn

{
1

n

n∑

i=1

φhinge (yi [Kα]i ) + λα⊤Kα

}

This is a convex optimization problem

But the objective function is not smooth (because of the hinge loss)
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Problem reformulation (2/3)

Let us introduce additional slack variables ξ1, . . . , ξn ∈ R. The
problem is equivalent to:

min
α∈Rn,ξ∈Rn

{
1

n

n∑

i=1

ξi + λα⊤Kα

}
,

subject to:
ξi ≥ φhinge (yi [Kα]i ) .

The objective function is now smooth, but not the constraints

However it is easy to replace the non-smooth constraint by a
cunjunction of two smooth constraints, because:

u ≥ φhinge(v) ⇔
{
u ≥ 1− v

u ≥ 0
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Problem reformulation (3/3)

In summary, the SVM solution is

f̂ (x) =
n∑

i=1

α̂iK (xi , x) ,

where α̂ solves:

SVM (primal formulation)

min
α∈Rn,ξ∈Rn

1

n

n∑

i=1

ξi + λα⊤Kα ,

subject to:

{
yi [Kα]i + ξi − 1 ≥ 0 , for i = 1, . . . , n ,

ξi ≥ 0 , for i = 1, . . . , n .
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Solving the SVM problem

This is a classical quadratic program (minimization of a convex
quadratic function with linear constraints) for which any
out-of-the-box optimization package can be used.

The dimension of the problem and the number of constraints,
however, are 2n where n is the number of points. General-purpose
QP solvers will have difficulties when n exceeds a few thousands.

Solving the dual of this problem (also a QP) will be more convenient
and lead to faster algorithms (due to the sparsity of the final
solution).
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Lagrangian

Let us introduce the Lagrange multipliers µ ∈ Rn and ν ∈ Rn.

The Lagrangian of the problem is:

L (α, ξ,µ,ν) =
1

n

n∑

i=1

ξi + λα⊤Kα

−
n∑

i=1

µi [yi [Kα]i + ξi − 1]−
n∑

i=1

νiξi

or, in matrix notations:

L (α, ξ,µ,ν) = ξ⊤
1

n
+ λα⊤Kα

− (diag (y)µ)⊤Kα− (µ+ ν)⊤ξ + µ⊤1
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Minimizing L (α, ξ,µ,ν) w.r.t. α

L (α, ξ,µ,ν) is a convex quadratic function in α. It is minimized
whenever its gradient is null:

∇αL = 2λKα−K diag (y)µ = K (2λα− diag (y)µ)

The following solves ∇αL = 0:

α∗ =
diag (y)µ

2λ
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Minimizing L (α, ξ,µ,ν) w.r.t. ξ

L (α, ξ,µ,ν) is a linear function in ξ.

Its minimum is −∞ except when it is constant, i.e., when:

∇ξL =
1

n
− µ− ν = 0

or equivalently

µ+ ν =
1

n

152 / 785



Dual function

We therefore obtain the Lagrange dual function:

q (µ,ν) = inf
α∈Rn,ξ∈Rn

L (α, ξ,µ,ν)

=

{
µ⊤1− 1

4λµ
⊤ diag (y)Kdiag (y)µ if µ+ ν = 1

n ,

−∞ otherwise.

The dual problem is:

maximize q (µ,ν)

subject to µ ≥ 0 ,ν ≥ 0 .
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Dual problem

If µi > 1/n for some i , then there is no νi ≥ 0 such that
µi + νi = 1/n, hence q (µ,ν) = −∞.

If 0 ≤ µi ≤ 1/n for all i , then the dual function takes finite values
that depend only on µ by taking νi = 1/n − µi .
The dual problem is therefore equivalent to:

max
0≤µ≤1/n

µ⊤1− 1

4λ
µ⊤ diag (y)Kdiag (y)µ

or with indices:

max
0≤µ≤1/n

n∑

i=1

µi −
1

4λ

n∑

i ,j=1

yiyjµiµjK (xi , xj) .
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Back to the primal

Once the dual problem is solved in µ we get a solution of the primal
problem by α = diag (y)µ/2λ.

Because the link is so simple, we can therefore directly plug this into
the dual problem to obtain the QP that α must solve:

SVM (dual formulation)

max
α∈Rn

2
n∑

i=1

αiyi −
n∑

i ,j=1

αiαjK (xi , xj) = 2α⊤y −α⊤Kα ,

subject to:

0 ≤ yiαi ≤
1

2λn
, for i = 1, . . . , n .
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Complimentary slackness conditions

The complimentary slackness conditions are, for i = 1, . . . , n:

{
µi [yi f (xi ) + ξi − 1] = 0,

νiξi = 0,

In terms of α this can be rewritten as:
{
αi [yi f (xi ) + ξi − 1] = 0 ,(
αi − yi

2λn

)
ξi = 0 .
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Analysis of KKT conditions

{
αi [yi f (xi ) + ξi − 1] = 0 ,(
αi − yi

2λn

)
ξi = 0 .

If αi = 0, then the second constraint is active: ξi = 0. This implies
yi f (xi ) ≥ 1.

If 0 < yiαi <
1

2λn , then both constraints are active: ξi = 0 et
yi f (xi ) + ξi − 1 = 0. This implies yi f (xi ) = 1.

If αi =
yi
2λn , then the second constraint is not active (ξi ≥ 0) while

the first one is active: yi f (xi ) + ξi = 1. This implies yi f (xi ) ≤ 1

157 / 785



Another point of view without KKT

The dual can be rewritten as the minimization of a quadratic function
under box constraints

min
α∈Rn

{
q(α) =

1

2
α⊤Kα−α⊤y

}
s.t. ∀i , 0 ≤ yiαi ≤ C ,

The gradient is ∇q(α) = Kα− y = [f (xi )− yi ]i=1,...,n.

Assume yi = 1 (case with yi = −1 is similar) and consider three cases:

α⋆
i

αi

q(α)

C
b

b

Case 1: 0 < yiα
⋆
i < C ;

[∇q(α⋆)]i = 0;

⇒ yi f (xi ) = 1.
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[∇q(α⋆)]i ≥ 0;
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Geometric interpretation
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Geometric interpretation

f(x
)=

−1

f(x
)=

+1

f(x
)=

0
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Geometric interpretation

0<α

α=0

y<1/2n

αy=1/2nλ

λ
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Support vectors

Consequence of KKT conditions

The training points with αi ̸= 0 are called support vectors.

Only support vectors are important for the classification of new
points:

∀x ∈ X , f (x) =
n∑

i=1

αiK (xi , x) =
∑

i∈SV
αiK (xi , x) ,

where SV is the set of support vectors.

Consequences

The solution is sparse in α, leading to fast algorithms for training
(use of decomposition methods).

The classification of a new point only involves kernel evaluations
with support vectors (fast).
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Remark: C-SVM

Often the SVM optimization problem is written in terms of a
regularization parameter C instead of λ as follows:

argmin
f ∈H

1

2
∥ f ∥2H + C

n∑

i=1

Lhinge (f (xi ) , yi ) .

This is equivalent to our formulation with C = 1
2nλ .

The SVM optimization problem is then:

max
α∈Rd

2
n∑

i=1

αiyi −
n∑

i ,j=1

αiαjK (xi , xj) ,

subject to:
0 ≤ yiαi ≤ C , for i = 1, . . . , n .

This formulation is often called C-SVM.
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Remark: 2-SVM

A variant of the SVM, sometimes called 2-SVM, is obtained by
replacing the hinge loss by the square hinge loss:

min
f ∈H

{
1

n

n∑

i=1

φhinge (yi f (xi ))
2 + λ∥ f ∥2H

}
.

After some computation (left as exercice) we find that the dual
problem of the 2-SVM is:

max
α∈Rd

2α⊤y −α⊤ (K+ nλI )α ,

subject to:
0 ≤ yiαi , for i = 1, . . . , n .

This is therefore equivalent to the previous SVM with the kernel
K+ nλI and C = +∞
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Part 4

Kernel Methods
Unsupervised Learning
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Principal Component Analysis (PCA)

Classical setting

Let S = {x1, . . . , xn} be a set of vectors (xi ∈ Rd)

PCA is a classical algorithm in multivariate statistics to define a set
of orthogonal directions that capture the maximum variance

Applications: low-dimensional representation of high-dimensional
points, visualization

PC1PC2
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Principal Component Analysis (PCA)

Formalization

Assume that the data are centered (otherwise center them as
preprocessing), i.e.:

1

n

n∑

i=1

xi = 0.

The orthogonal projection onto a direction w ∈ Rd is the function
hw : Rd → R defined by:

hw (x) = x⊤
w

∥w ∥ .
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Principal Component Analysis (PCA)

Formalization

The empirical variance captured by hw is:

ˆvar (hw) :=
1

n

n∑

i=1

hw (xi )
2 =

1

n

n∑

i=1

(
x⊤i w

)2

∥w ∥2 .

The i-th principal direction wi (i = 1, . . . , d) is defined by:

wi = argmax
w⊥{w1,...,wi−1}

ˆvar (hw) s.t. ∥w∥ = 1.
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Principal Component Analysis (PCA)

Solution

Let X be the n × d data matrix whose rows are the vectors
x1, . . . , xn. We can then write:

ˆvar (hw) =
1

n

n∑

i=1

(
x⊤i w

)2

∥w ∥2 =
1

n

w⊤X⊤Xw

w⊤w
.

The solutions of:

wi = argmax
w⊥{w1,...,wi−1}

w⊤X⊤Xw s.t. ∥w∥ = 1

are the successive eigenvectors of X⊤X, ranked by decreasing
eigenvalues.
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Kernel Principal Component Analysis (PCA)

Let x1, . . . , xn be a set of data points in X ; let K : X × X → R be a
positive definite kernel and H be its RKHS.

Formalization

Assume that the data are centered (otherwise center by
manipulating the kernel matrix), i.e.:

1

n

n∑

i=1

xi =⇒ 1

n

n∑

i=1

φ(xi ) = 0.

The orthogonal projection onto a direction f ∈ H is the function
hf : X → R defined by:

hw (x) = x⊤
w

∥w ∥ =⇒ hf (x) =

〈
φ(x),

f

∥f ∥H

〉

H
.
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Kernel Principal Component Analysis (PCA)

Let x1, . . . , xn be a set of data points in X ; let K : X × X → R be a
positive definite kernel and H be its RKHS.

Formalization

The empirical variance captured by hf is:

ˆvar (hw) =
1

n

n∑

i=1

(
x⊤i w

)2

∥w ∥2 =⇒ ˆvar (hf ) :=
1

n

n∑

i=1

⟨φ(xi ), f ⟩2H
∥ f ∥2H

.

The i-th principal direction fi (i = 1, . . . , d) is defined by:

fi = argmax
f⊥{f1,...,fi−1}

ˆvar (hf ) s.t. ∥f ∥H = 1.
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Formalization

The empirical variance captured by hf is:

ˆvar (hw) =
1

n

n∑

i=1

(
x⊤i w

)2

∥w ∥2 =⇒ ˆvar (hf ) :=
1

n

n∑

i=1

f (xi )
2

∥ f ∥2H
.

The i-th principal direction fi (i = 1, . . . , d) is defined by:

fi = argmax
f⊥{f1,...,fi−1}

n∑

i=1

f (xi )
2 s.t. ∥f ∥H = 1.

170 / 785



Sanity check: kernel PCA with linear kernel = PCA

Let K (x, y) = x⊤y be the linear kernel.

The associated RKHS H is the set of linear functions:

fw (x) = w⊤x ,

endowed with the norm ∥ fw ∥H = ∥w ∥Rd .

Therefore we can write:

ˆvar (hw) =
1

n

n∑

i=1

(
x⊤i w

)2

∥w ∥2 =
1

n∥ fw ∥2
n∑

i=1

fw(xi )
2.

Moreover, w ⊥ w′ ⇔ fw ⊥ fw′ .
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Kernel Principal Component Analysis (PCA)

Solution

Kernel PCA solves, for i = 1, . . . , d :

fi = argmax
f⊥{f1,...,fi−1}

n∑

i=1

f (xi )
2 s.t. ∥f ∥H = 1.

We can apply the representer theorem (exercise: check that is is also
valid in this case): for i = 1, . . . , d , we have:

∀x ∈ X , fi (x) =
n∑

j=1

αi ,jK (xj , x) ,

with αi = (αi ,1, . . . , αi ,n)
⊤ ∈ Rn.
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Kernel Principal Component Analysis (PCA)

Therefore we have:

∥ fi ∥2H =
n∑

k,l=1

αi ,kαi ,lK (xk , xl) = α⊤
i Kαi ,

Similarly:
n∑

k=1

fi (xk)
2 = α⊤

i K
2αi .

and
⟨fi , fj⟩H = α⊤

i Kαj .
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Kernel Principal Component Analysis (PCA)

Solution

Kernel PCA maximizes in α the function:

αi = argmax
α∈Rn

α⊤K2α,

under the constraints:
{

α⊤
i Kαj = 0 for j = 1, . . . , i − 1 .

α⊤
i Kαi = 1
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Kernel Principal Component Analysis (PCA)

Solution

Compute the eigenvalue decomposition of the kernel matrix
K = U∆U⊤, with eigenvalues ∆1 ≥ . . . ≥ ∆n ≥ 0.

After a change of variable β = K1/2α (with K1/2 = U∆1/2U⊤),

βi = argmax
β∈Rn

β⊤Kβ,

under the constraints:
{

β⊤
i βj = 0 for j = 1, . . . , i − 1 .

β⊤
i βi = 1

Thus, βi = ui (i-th eigenvector) is a solution!

Finally, αi =
1√
∆i

ui .
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Kernel Principal Component Analysis (PCA)

Summary

1 Center the Gram matrix

2 Compute the first eigenvectors (ui ,∆i )

3 Normalize the eigenvectors αi = ui/
√
∆i

4 The projections of the points onto the i-th eigenvector is given by
Kαi
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Kernel Principal Component Analysis (PCA)

Remarks

In this formulation, we must diagonalize the centered kernel Gram
matrix, instead of the covariance matrix in the classical setting

Exercise: check that X⊤X and XX⊤ have the same spectrum (up to
0 eigenvalues) and that the eigenvectors are related by a simple
relationship.

This formulation remains valid for any p.d. kernel: this is kernel PCA

Applications: nonlinear PCA with nonlinear kernels for vectors, PCA
of non-vector objects (strings, graphs..) with specific kernels...
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Example

PC2

PC1

A set of 74 human tRNA
sequences is analyzed using a
kernel for sequences (the
second-order marginalized
kernel based on SCFG). This
set of tRNAs contains three
classes, called Ala-AGC
(white circles), Asn-GTT
(black circles) and Cys-GCA
(plus symbols) (from Tsuda
et al., 2003).
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The K-means algorithm

K-means is probably the most popular algorithm for clustering.

Optimization point of view

Given data points x1, . . . , xn in Rp, it consists of performing alternate
minimization steps for optimizing the following cost function

min
µj∈Rp for j=1,...,k

si∈{1,...,k}, for i=1,...,n

n∑

i=1

∥xi − µsi∥
2
2.

K-means alternates between two steps:

1 cluster assignment:
Given fixed µ1, . . . ,µk , assign each xi to its closest centroid

∀i , si ∈ argmin
s∈{1,...,k}

∥xi − µs∥22.
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2
2.

K-means alternates between two steps:

2 centroids update:
Given the previous assignments s1, . . . , sn, update the centroids

⇔ ∀j , µj =
1

|Cj |
∑

i∈Cj

xi with Cj = {i : si = j}.
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The kernel K-means algorithm

We may now modify the objective to operate in a RKHS. Given data
points x1, . . . , xn in X and a p.d. kernel K : X × X → R with H its
RKHS, the new objective becomes

min
µj∈H for j=1,...,k

si∈{1,...,k} for i=1,...,n

n∑

i=1

∥φ(xi )− µsi∥
2
H.

To optimize the cost function, we will first use the following Proposition

Proposition

The center of mass φn = 1
n

∑n
i=1 φ(xi ) solves the following optimization

problem

min
µ∈H

n∑

i=1

∥φ(xi )− µ∥2H.
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The kernel K-means algorithm

Proof

1

n

n∑

i=1

∥φ(xi )− µ∥2H =
1

n

n∑

i=1

∥φ(xi )∥2H −
〈
2

n

n∑

i=1

φ(xi ),µ

〉

H

+ ∥µ∥2H

=
1

n

n∑

i=1

∥φ(xi )∥2H − 2 ⟨φn,µ⟩H + ∥µ∥2H

=
1

n

n∑

i=1

∥φ(xi )∥2H − ∥φn∥2H + ∥φn − µ∥2H,

which is minimum for µ = φn.
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The kernel K-means algorithm

Given now the objective,

min
µj∈H for j=1,...,k

si∈{1,...,k} for i=1,...,n

n∑

i=1

∥φ(xi )− µsi∥
2
H,

we know that given assignments si , the optimal µj are the centers of
mass of the respective clusters and we obtain

Greedy approach: kernel K-means

We alternate between two steps:

1 centroids update:
Given the previous assignments s1, . . . , sn, update the centroids

∀j , µj = argmin
µ∈H

∑

i :si=j

∥φ(xi )− µ∥2H.
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Given fixed µ1, . . . ,µk , assign each xi to its closest centroid: ∀ i ,

si ∈ argmin
s∈{1,...,k}

∥∥∥∥∥∥
φ(xi )−

1

|Cs |
∑

j∈Cs

φ(xj)

∥∥∥∥∥∥

2

H

(Cs is from step 1).
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We alternate between two steps:

2 cluster assignment:
Given fixed µ1, . . . ,µk , assign each xi to its closest centroid: ∀ i ,

si ∈ argmin
s∈{1,...,k}


K (xi , xi )−

2

|Cs |
∑

j∈Cs

K (xi , xj) +
1

|Cs |2
∑

j ,l∈Cs

K (xj , xl)


 .
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The kernel K-means algorithm, equivalent objective

Note that all operations are performed by manipulating kernel values
K (xi , xj) only. Implicitly, we are optimizing in fact

min
si∈{1,...,k}
for i=1,...,n

n∑

i=1

∥∥∥∥∥∥
φ(xi )−

1

|Csi |
∑

j∈Csi

φ(xj)

∥∥∥∥∥∥

2

H

,

or, equivalently,

min
si∈{1,...,k}
for i=1,...,n

n∑

i=1


K (xi , xi )−

2

|Csi |
∑

j∈Csi

K (xi , xj) +
1

|Csi |2
∑

j ,l∈Csi

K (xj , xl)


 .

Then, notice that

n∑

i=1

1

|Csi |2
∑

j ,l∈Csi

K (xj , xl) =
k∑

l=1

1

|Cl |
∑

i ,j∈Cl

K (xi , xj).
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The kernel K-means algorithm, equivalent objective

Note that all operations are performed by manipulating kernel values
K (xi , xj) only. Implicitly, we are optimizing in fact

min
si∈{1,...,k}
for i=1,...,n

n∑

i=1

∥∥∥∥∥∥
φ(xi )−

1

|Csi |
∑

j∈Csi

φ(xj)

∥∥∥∥∥∥

2

H

,

or, equivalently,

min
si∈{1,...,k}
for i=1,...,n

n∑

i=1


K (xi , xi )−

2

|Csi |
∑

j∈Csi

K (xi , xj) +
1

|Csi |2
∑

j ,l∈Csi

K (xj , xl)


 .

and
n∑

i=1

1

|Csi |
∑

j∈Csi

K (xi , xj) =
k∑

l=1

1

|Cl |
∑

i ,j∈Cl

K (xi , xj).

184 / 785



The kernel K-means algorithm, equivalent objective

Then, after removing the constant terms K (xi , xi ), we obtain:

Proposition

The kernel K-means objective is equivalent to the following one:

max
si∈{1,...,k}
for i=1,...,n

k∑

l=1

1

|Cl |
∑

i ,j∈Cl

K (xi , xj).

This is a hard combinatorial optimization problem.

There are two types of algorithms to address it:

1 greedy algorithm: kernel K-means

2 spectral relaxation: spectral clustering
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Spectral clustering algorithms

Instead of a greedy approach, we can relax the problem into a feasible
one, which yields a class of algorithms called spectral clustering.

First, consider the objective

max
si∈{1,...,k}
for i=1,...,n

k∑

l=1

1

|Cl |
∑

i ,j∈Cl

K (xi , xj).

and we introduce

(⋆) the binary assignment matrix A in {0, 1}n×k whose rows sum to one.

(⋆⋆) the diagonal rescaling matrix D in Rk×k with diagonal entries [D]jj
equal to (

∑n
i=1[A]ij)

−1: the inverse of the cardinality of cluster j .

and the objective can be rewritten (proof is easy and left as an exercise)

max
A,D

[
trace (D1/2A⊤KAD1/2)

]
s.t. (⋆) and (⋆⋆).
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Spectral clustering algorithms

max
A,D

trace (D1/2A⊤KAD1/2) s.t. (⋆) and (⋆⋆).

The constraints on A,D are such that D1/2A⊤AD1/2 = I (exercise). A
natural relaxation consists of dropping the constraints (⋆, ⋆⋆) on A
and D and instead optimize over Z = AD1/2:

max
Z∈Rn×k

trace (Z⊤KZ) s.t. Z⊤Z = I.

A solution Z⋆ to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. This procedure
is related to the kernel PCA algorithm!
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natural relaxation consists of dropping the constraints (⋆, ⋆⋆) on A
and D and instead optimize over Z = AD1/2:

max
Z∈Rn×k

trace (Z⊤KZ) s.t. Z⊤Z = I.

A solution Z⋆ to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. This procedure
is related to the kernel PCA algorithm!

Question

How do we obtain an approximate solution (A,D) of the original problem
from the exact solution of the relaxed one Z⋆?
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Spectral clustering algorithms

max
A,D

trace (D1/2A⊤KAD1/2) s.t. (⋆) and (⋆⋆).

The constraints on A,D are such that D1/2A⊤AD1/2 = I (exercise). A
natural relaxation consists of dropping the constraints (⋆, ⋆⋆) on A
and D and instead optimize over Z = AD1/2:

max
Z∈Rn×k

trace (Z⊤KZ) s.t. Z⊤Z = I.

A solution Z⋆ to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. This procedure
is related to the kernel PCA algorithm!

Answer 1

With the original constraints on A, every row of A has a single non-zero
entry ⇒ compute the maximum entry of every row of Z⋆.
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Spectral clustering algorithms

max
A,D

trace (D1/2A⊤KAD1/2) s.t. (⋆) and (⋆⋆).

The constraints on A,D are such that D1/2A⊤AD1/2 = I (exercise). A
natural relaxation consists of dropping the constraints (⋆, ⋆⋆) on A
and D and instead optimize over Z = AD1/2:

max
Z∈Rn×k

trace (Z⊤KZ) s.t. Z⊤Z = I.

A solution Z⋆ to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. This procedure
is related to the kernel PCA algorithm!

Answer 2

Normalize the rows of Z⋆ to have unit ℓ2-norm, and apply the traditional
K-means algorithm on the rows. This is called spectral clustering.
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Spectral clustering algorithms

max
A,D

trace (D1/2A⊤KAD1/2) s.t. (⋆) and (⋆⋆).

The constraints on A,D are such that D1/2A⊤AD1/2 = I (exercise). A
natural relaxation consists of dropping the constraints (⋆, ⋆⋆) on A
and D and instead optimize over Z = AD1/2:

max
Z∈Rn×k

trace (Z⊤KZ) s.t. Z⊤Z = I.

A solution Z⋆ to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. This procedure
is related to the kernel PCA algorithm!

Answer 3

Choose another variant of the previous procedures.
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Canonical Correlation Analysis (CCA)

Given two views X = [x1, . . . , xn] in Rp×n and Y = [y1, . . . , yn] in Rd×n

of the same dataset, the goal of canonical correlation analysis (CCA) is
to find pairs of directions in the two views that are maximally correlated.

Formulation

Assuming that the datasets are centered, we want to maximize

max
wa∈Rp ,wb∈Rd

1
n

∑n
i=1w

⊤
a xiy

⊤
i wb

(
1
n

∑n
i=1w

⊤
a xix

⊤
i wa

)1/2 ( 1
n

∑n
i=1w

⊤
b yiy

⊤
i wb

)1/2 .

Assuming that the pairs (xi , yi ) are i.i.d. samples from an unknown
distribution, CCA seeks to maximize

max
wa∈Rp ,wb∈Rd

cov(w⊤
a X ,w

⊤
b Y )

√
var(w⊤

a X )
√
var(w⊤

b Y )
.
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1
n
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⊤
i wa
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n

∑n
i=1w

⊤
b yiy

⊤
i wb
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It is possible to show that this is an generalized eigenvalue problem (see
next slide or see Section 6.5 of Shawe-Taylor and Cristianini 2004b).

The above problem provides the first pair of canonical directions. Next
directions can be obtained by solving the same problem under the
constraint that they are orthogonal to the previous canonical directions.
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Canonical Correlation Analysis (CCA)

Formulation

Assuming that the datasets are centered,

max
wa∈Rp ,wb∈Rd

w⊤
a X

⊤Ywb

(w⊤
a X

⊤Xwa)
1/2 (w⊤

b Y
⊤Ywb

)1/2 .

can be formulated, after removing the scaling ambiguity, as

max
wa∈Rp ,wb∈Rd

w⊤
a X

⊤Ywb s.t. w⊤
a X

⊤Xwa = 1 and w⊤
b Y

⊤Ywb = 1.

Then, there exists λa and λb such that the problem is equivalent to

min
wa∈Rp ,wb∈Rd

−w⊤
a X

⊤Ywb +
λa
2
(w⊤

a X
⊤Xwa − 1) +

λb
2
(w⊤

b Y
⊤Ywb − 1).
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Canonical Correlation Analysis (CCA)

Taking the derivatives and setting the gradient to zero, we obtain

−X⊤Ywb + λaX
⊤Xwa = 0

−Y⊤Xwa + λbY
⊤Ywb = 0

Multiply first equality by w⊤
a and second equality by w⊤

b ; subtract the
two resulting equalities and we get

λaw
⊤
a X

⊤Xwa = λbw
⊤
b Y

⊤Ywb = λa = λb = λ,

and then, we obtain the generalized eigenvalue problem:

[
0 X⊤Y

Y⊤X 0

] [
wa

wb

]
= λ

[
X⊤X 0
0 Y⊤Y

] [
wa

wb

]
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Canonical Correlation Analysis (CCA)

Let us define

ΣA =

[
0 X⊤Y

Y⊤X 0

]
, ΣB =

[
X⊤X 0
0 Y⊤Y

]
and w =

[
wa

wb

]

Assuming the covariances are invertible, the generalized eigenvalue
problem is equivalent to

Σ
−1/2
B ΣAw = λΣ

1/2
B w

which is also equivalent to the eigenvalue problem

Σ
−1/2
B ΣAΣ

−1/2
B (Σ

1/2
B w) = λ(Σ

1/2
B w).
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Kernel Canonical Correlation Analysis

Similar to kernel PCA, it is possible to operate in a RKHS. Given two
p.d. kernels Ka,Kb : X × X → R, we can obtain two “views” of a
dataset x1, . . . , xn in X n:

(φa(x1), . . . , φa(xn)) and (φb(x1), . . . , φb(xn)),

where φa : X → Ha and φb : X → Hb are the embeddings in the
RKHSs Ha of Ka and Hb of Kb, respectively.

Formulation

Then, we may formulate kernel CCA as

max
fa∈Ha,fb∈Hb

1
n

∑n
i=1 ⟨fa, φa(xi )⟩Ha

⟨φb(xi ), fb⟩Hb(
1
n

∑n
i=1 ⟨fa, φa(xi )⟩2Ha

)1/2 (
1
n

∑n
i=1 ⟨fb, φb(xi )⟩2Hb

)1/2 .

193 / 785



Kernel Canonical Correlation Analysis

Similar to kernel PCA, it is possible to operate in a RKHS. Given two
p.d. kernels Ka,Kb : X × X → R, we can obtain two “views” of a
dataset x1, . . . , xn in X n:

(φa(x1), . . . , φa(xn)) and (φb(x1), . . . , φb(xn)),

where φa : X → Ha and φb : X → Hb are the embeddings in the
RKHSs Ha of Ka and Hb of Kb, respectively.

Formulation

Then, we may formulate kernel CCA as

max
fa∈Ha,fb∈Hb

1
n

∑n
i=1 fa(xi )fb(xi )(

1
n

∑n
i=1 fa(xi )

2
)1/2 ( 1

n

∑n
i=1 fb(xi )

2
)1/2 .
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Kernel Canonical Correlation Analysis

Up to a few technical details (exercise), we can apply the representer
theorem and look for solutions fa(.) =

∑n
i=1 αiKa(xi , .) and

fb(.) =
∑n

i=1 βiKb(xi , .). We finally obtain the formulation

max
α∈Rn,β∈Rn

1
n

∑n
i=1[Kaα]i [Kbβ]i

(
1
n

∑n
i=1[Kaα]2i

)1/2 ( 1
n

∑n
i=1[Kbβ]

2
i

)1/2 ,

which is equivalent to

max
α∈Rn,β∈Rn

α⊤KaKbβ

(α⊤K2
aα)

1/2 (
β⊤K2

bβ
)1/2 ,

or, after removing the scaling ambiguity for α and β,

Equivalent formulation

max
α∈Rn,β∈Rn

α⊤KaKbβ s.t. α⊤K2
aα = 1 and β⊤K2

bβ = 1.

194 / 785



Kernel Canonical Correlation Analysis

max
α∈Rn,β∈Rn

α⊤KaKbβ s.t. α⊤K2
aα = 1 and β⊤K2

bβ = 1.

This also leads to a generalized eigenvalue problem.

The subsequent canonical directions are obtained by solving the
same problem with additional orthogonality constraints.

What is wrong here?

If Ka and Kb are invertible, make the change of variable α′ = Kaα and
β′ = Kbβ, and we obtain the equivalent formulation

max
α′∈Rn,β′∈Rn

α′⊤β′ s.t. α′⊤α′ = 1 and β′⊤β′ = 1.

The function is maximized for any α′ = β′ in Rn. In high (or infinite)
dimension, it is easy to find spurious correlations.
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Spurious correlations

Spurious correlations are bad:

Figure: http://www.tylervigen.com/.
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Kernel Canonical Correlation Analysis

max
α∈Rn,β∈Rn

α⊤KaKbβ s.t. α⊤K2
aα = 1 and β⊤K2

bβ = 1.

spurious correlation is a problem of overfitting;

it also a problem of numerical instability, due to the need to invert
the kernel matrices;

A solution to both problems: Regularize!

Find smooth directions (fa, fb) by penalizing ∥fa∥Ha and ∥fb∥Hb
.

it consists of replacing the constraints α⊤K2
aα = 1 by

(1− τ)α⊤K2
aα+ τ α⊤Kaα︸ ︷︷ ︸

∥fa∥2Ha

= 1,

and do the same for β⊤K2
bβ = 1.
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Application of kernel CCA

Finding a joint latent representation of text (tags) and images.

Figure: Figure from Gong and Lazebnik, 2014.
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Part 5

The Kernel Jungle
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Introduction

The kernel function plays a critical role in the performance of kernel
methods.

It is the place where prior knowledge about the problem can be
inserted, in particular by controlling the norm of functions in the
RKHS.

In this part we provide some intuition about the link between kernels
and smoothness functional through several examples.

Subsequent parts will focus on the design of kernels for particular
types of data.
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Motivations

The RKHS norm is related to the smoothness of functions.

Smoothness of a function is naturally quantified by Sobolev norms
(in particular L2 norms of derivatives).

Example: spline regression

min
f

n∑

i=1

(yi − f (xi ))
2 + λ

∫ (
f ′′(t)

)2
dt
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In this section we make a general link between RKHS and Green
functions defined by differential operators.
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A simple example

Definition: Absolute Continuity (AC)

A function f is absolutely continuous on [a, b] iff there exists a Lebesgue
integrable function g on [a, b] such that for all x ∈ [a, b],

f (x) = f (a) +

∫ x

a
g(t)dt

in which case g = f ′ almost everywhere.

Let H =
{
f : [0, 1] 7→ R,AC, f ′ ∈ L2 ([0, 1]) , f (0) = 0

}
, endowed with

the bilinear form:

∀f , g ∈ H , ⟨f , g⟩H =

∫ 1

0
f ′ (u) g ′ (u) du .

The norm ⟨f , f ⟩H measures the smoothness of f in terms of its first
variation.
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The RKHs point of view

Theorem

H is an RKHS with r.k. given by:

∀ (x , y) ∈ [0, 1]2, K (x , y) = min (x , y) .

Therefore, the RKHS norm is precisely the smoothness functional defined
in the simple example:

∥ f ∥H = ∥ f ′ ∥L2([0,1])
In particular, the following problem

min
f ∈H

n∑

i=1

(yi − f (xi ))
2 + λ

∫ 1

0

(
f ′(t)

)2
dt

can be reformulated as a simple kernel ridge regression problem with
kernel K (x , y) = min (x , y):

min
f ∈H

n∑

i=1

(yi − f (xi ))
2 + λ∥ f ∥2H
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Proof (1/5)

We need to show that

1 H is a Hilbert space of functions

2 ∀x ∈ [0, 1], Kx ∈ H,
3 ∀ (x , f ) ∈ [0, 1]×H, ⟨f ,Kx⟩H = f (x).
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Proof (2/5)

H is a pre-Hilbert space of functions

H is a vector space of functions, and ⟨f , g⟩H a bilinear form that
satisfies ⟨f , f ⟩H ≥ 0.

f absolutely continuous implies differentiable almost everywhere, and

∀x ∈ [0, 1], f (x) = f (0) +

∫ x

0
f ′(u)du .

For any f ∈ H, f (0) = 0 implies by Cauchy-Schwarz:

| f (x) | =
∣∣∣∣
∫ x

0
f ′(u)du

∣∣∣∣ ≤
√
x

(∫ 1

0
f ′(u)2du

) 1
2

=
√
x ⟨f , f ⟩1/2H .

Therefore, ⟨f , f ⟩H = 0 =⇒ f = 0, showing that ⟨., .⟩H is an inner
product. H is thus a pre-Hilbert space.

208 / 785



Proof (3/5)

H is a Hilbert space

To show that H is complete, let (fn)n∈N a Cauchy sequence in H
(f ′n)n∈N is a Cauchy sequence in L2[0, 1], thus converges to
g ∈ L2[0, 1]

By the previous inequality, (fn(x))n∈N is a Cauchy sequence and
thus converges to a real number f (x), for any x ∈ [0, 1]. Moreover:

f (x) = lim
n

fn(x) = lim
n

∫ x

0
f ′n(u)du =

∫ x

0
g(u)du ,

showing that f is absolutely continuous and f ′ = g almost
everywhere; in particular, f ′ ∈ L2[0, 1].

Finally, f (0) = limn fn(0) = 0, therefore f ∈ H and

lim
n
∥ fn − f ∥H = ∥ f ′ − gn ∥L2([0,1]) = 0 .
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Proof (4/5)

∀x ∈ [0, 1], Kx ∈ H
Let Kx(y) = K (x , y) = min(x , y) sur [0, 1]2:

t
s 1

K(s,t)

Kx is differentiable except at s, has a square integrable derivative,
and Kx(0) = 0, therefore Kx ∈ H for all x ∈ [0, 1].
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Proof (5/5)

For all x , f , ⟨f ,Kx⟩H = f (x)

For any x ∈ [0, 1] and f ∈ H we have:

⟨f ,Kx⟩H =

∫ 1

0
f ′(u)K ′

x(u)du =

∫ x

0
f ′(u)du = f (x),

This shows that H is a RKHS with K as r.k. □
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Generalization

Theorem

Let X = Rd and D a differential operator on a class of functions H such
that, endowed with the inner product:

∀ (f , g) ∈ H2, ⟨f , g⟩H = ⟨Df ,Dg⟩L2(X ) ,

it is a Hilbert space.
Consider the operator R = D∗D where D∗ denotes the adjoint operator
of D. Assume that R admits a Green function (x , y) 7→ K (x , y), so that
K (x , .) ∈ H for all x ∈ X . Then, the space H is a RKHS with r.k. given
by K .
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Green function?

Definition

Let the differential equation on H:

f = Rg ,

where g is unknown. In order to solve it we can look for g of the form:

g (x) =

∫

X
k (x , y) f (y) dy

for some function k : X 2 7→ R. k must then satisfy, for all x ∈ X ,

f (x) = Rg (x) = ⟨Rkx , f ⟩L2(X ) .

If such a k exists, it is called the Green function of the operator R.
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Proof

Let H be a Hilbert space endowed with the inner product:

⟨f , g⟩X = ⟨Df ,Dg⟩L2(X ) ,

and K be the Green function of the operator R = D∗D.

For all x ∈ X , Kx ∈ H because:

⟨DKx ,DKx⟩L2(X ) = ⟨D∗DKx ,Kx⟩L2(X ) = Kx (x) <∞ .

(caveat: sometimes other conditions must be fulfilled to be in H, to
be checked on a case by case basis).

Moreover, for all f ∈ H and x ∈ X , we have:

f (x) = ⟨D∗DKx , f ⟩L2(X ) = ⟨DKx ,Df ⟩L2(X ) = ⟨Kx , f ⟩H .

This shows that H is a RKHS with K as r.k. □
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Example

Back to our example, take X = [0, 1] and Df (u) = f ′(u)

To find the r.k. of H we need to solve in k :

f (x) = ⟨D∗Dkx , f ⟩L2([0,1])
= ⟨Dkx ,Df ⟩L2([0,1])

=

∫ 1

0
k ′x(u)f

′(u)du

The solution is
k ′x(u) = 1[0,x](u)

which gives

kx(u) =

{
u if u ≤ x ,

x otherwise.

and therefore
k(x , x ′) = min(x , x ′)
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Outline

5 The Kernel Jungle
Green, Mercer, Herglotz, Bochner and friends

Green kernels
Mercer kernels
Shift-invariant kernels
Generalization to semigroups
Proof of Bochner’s theorem
Proof of Mercer’s theorem
Convergence rates of KRR for Mercer kernels

Kernels for probabilistic models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs
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Mercer kernels

Definition

A kernel K on a set X is called a Mercer kernel if:

1 X is a compact metric space (e.g.: closed bounded subset of Rd).

2 K : X × X → R is a continuous p.d. kernel.

Motivations

We can exhibit an explicit and intuitive feature space for a large
class of p.d. kernels

Historically, provided the first proof that a p.d. kernel is an inner
product for non-finite sets X (Mercer, 1905).

Can be thought of as the natural generalization of the factorization
of positive semidefinite matrices over infinite spaces.
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Sketch of proof that a Mercer kernel is an inner product

1 The kernel matrix when X is finite becomes a linear operator when
X is a metric space.

2 The matrix was positive semidefinite in the finite case, the linear
operator is self-adjoint and positive in the metric case.

3 The spectral theorem states that any compact linear operator
admits a complete orthonormal basis of eigenfunctions, with
non-negative eigenvalues (just like positive semidefinite matrices can
be diagonalized with nonnegative eigenvalues).

4 The kernel function can then be expanded over basis of
eigenfunctions as:

K (x, t) =
∞∑

k=1

λkψk (x)ψk (t) ,

where λi ≥ 0 are the non-negative eigenvalues.
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In case of...

Definition

Let H be a Hilbert space

A linear operator is a continuous linear mapping from H to itself.

A linear operator L is called compact if, for any bounded sequence
{fn}∞n=1, the sequence {Lfn}∞n=1 has a subsequence that converges.

L is called self-adjoint if, for any f , g ∈ H:

⟨f , Lg⟩ = ⟨Lf , g⟩ .

L is called positive if it is self-adjoint and, for any f ∈ H:

⟨f , Lf ⟩ ≥ 0 .
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An important lemma

The linear operator

Let ν be any Borel measure on X , and L2ν (X ) the Hilbert space of
(equivalence classes of) square integrable functions on X .
For any function K : X 2 7→ R, let the transform:

∀f ∈ L2ν (X ) , (LK f ) (x) =

∫
K (x, t) f (t) dν (t) .

Lemma

If K is a Mercer kernel, then LK is a compact and bounded linear
operator over L2ν (X ), self-adjoint and positive.
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Diagonalization of the operator

We need the following general result (e.g., Debnath and Mikusiński,
2005, Section 4.10)

Spectral theorem

Let L be a compact self-adjoint linear operator on a Hilbert space H.
Then there exists in H a complete orthonormal system (ψ1, ψ2, . . .) of
eigenvectors of L, with real eigenvalues (λ1, λ2, . . .) which are
non-negative if L is positive.

Remark

This theorem can be applied to LK . In that case the eigenfunctions ψk

associated to the eigenfunctions λk ̸= 0 can be considered as continuous
functions, because:

ψk =
1

λk
LKψk .
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Main result

Mercer’s Theorem

Let X be a compact metric space, ν a nondegeneratea Borel measure on
X , and K a continuous p.d. kernel. Let λ1 ≥ λ2 ≥ . . . ≥ 0 denote the
nonnegative eigenvalues of LK and (ψ1, ψ2, . . .) the corresponding
eigenfunctions. Then all functions ψk are continuous, and for any
x, t ∈ X :

K (x, t) =
∞∑

k=1

λkψk (x)ψk (t) ,

where the convergence is absolute for each x, t ∈ X , and uniform on
X × X .

ai.e., ν(U) > 0 for any nonempty open set U ⊂ X
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Mercer kernels as inner products

Let ℓ2 denote the Hilbert space of real-valued sequences u = (uk)k∈N
such that

∑
k∈N u2k < +∞, endowed with the inner product

⟨u, v⟩ =∑k∈N ukvk .

Corollary

The mapping

Φ : X 7→ ℓ2

x 7→
(√

λkψk (x)
)
k∈N

is well defined, continuous, and satisfies

K (x, t) = ⟨Φ (x) ,Φ (t)⟩ℓ2 .
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Proof of the corollary

By Mercer theorem we see that for all x ∈ X , ∑λkψ
2
k (x) converges

to K (x, x) <∞, therefore Φ (x) ∈ ℓ2.
The continuity of Φ results from:

∥Φ (x)− Φ (t) ∥2ℓ2 =
∞∑

k=1

λk (ψk (x)− ψk (t))
2

= K (x, x) + K (t, t)− 2K (x, t)
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Summary

This proof extends the proof valid when X is finite.

This is a constructive proof, developed by Mercer (1905).

The eigensystem (λk and ψk) depend on the choice of the measure
dν(x): different ν’s lead to different feature spaces for a given
kernel and a given space X
Compactness and continuity are required. For instance, for X = Rd ,
the eigenvalues of:

∫

X
K (x, t)ψ (t) dt = λψ (x)

are not necessarily countable, Mercer theorem does not hold. Other
tools are thus required such as the Fourier transform for
shift-invariant kernels.
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Example 1: [0, 1] (1/6)

Consider the unit interval X = [0, 1] endowed with the Lebesgue
measure dν(x) = dx

Let a p.d. kernel on X of the form

K (x, t) = κ (x− t) ,

where κ : R→ R is continuous and 1-periodic.

To write Mercer’s expansion we need to find the eigenfunctions of
LK by solving

(LKψ)(x) =

∫ 1

0
κ (x− t)ψ (t) dt = λψ (x)
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Example 1: [0, 1] (2/6)

Lemma

Let (ψn)n∈N be the Fourier ONB of L2([0, 1]) given by ψ0(x) = 1 and

∀n ≥ 1 ,

{
ψ2n−1(x) =

√
2 sin(2πnx) ,

ψ2n(x) =
√
2 cos(2πnx) .

Let the Fourier expansion of κ bea

∀x ∈ [0, 1] , κ(x) =
∞∑

n=0

κ̂2nψ2n(x) .

Then for any n ∈ N, ψn is an eigenfunction of LK with eigenvalues κ̂0 for
ψ0 and κ̂2n/

√
2 for ψ2n−1 and ψ2n.

aK symmetric =⇒ κ even =⇒ κ̂2n+1 = 0 for n ∈ N.
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Example 1: [0, 1] (3/6)

Proof sketch:

(ψn)n∈N is an ONB of L2([0, 1]) by direct computation of∫ 1
0 ψi (x)ψj(x)dx = δij .
By trigonometric expansion of sin(a+ b) and cos(a+ b), show that

{
ψ2n(x− t) = 1√

2
[ψ2n(x)ψ2n(t) + ψ2n−1(x)ψ2n−1(t)] ,

ψ2n−1(x− t) = 1√
2
[ψ2n−1(x)ψ2n(t)− ψ2n(x)ψ2n−1(t)] .

Then direct computation of LKψi , e.g.,

LKψ2n(x) =
∞∑

ℓ=0

κ̂2ℓ

∫ 1

0
ψ2ℓ(x− t)ψ2n(t)dt

=
∞∑

ℓ=0

κ̂2ℓ√
2

∫ 1

0
[ψ2ℓ(x)ψ2ℓ(t) + ψ2ℓ−1(x)ψ2ℓ−1(t)]ψ2n(t)dt

=
∞∑

ℓ=0

κ̂2ℓ√
2
ψ2ℓ(x)δnℓ =

κ̂2n√
2
ψ2n(x) . □
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Example 1: [0, 1] (4/6)

Remark: Mercer’s theorem is obviously correct. All ψk ’s are continuous,
and for any x, t ∈ [0, 1] the Mercer expansion of the kernel is:

K (x, t) = κ̂0 +
∞∑

n=1

κ̂2n√
2
[ψ2n−1(x)ψ2n−1(t) + ψ2n(x)ψ2n(t)]

=
∞∑

n=0

κ̂2nψ2n(x− t)

= κ(x− t) ,

(3)

with absolute and uniform convergence (because κ is continuous).

229 / 785



Example 1: [0, 1] (5/6)

Example: polynomial decay of eigenvalues

For any β ∈ N∗, let

{
κ̂0 = 0 ,

κ̂2n =
√
2n−2β for n ≥ 1 .

Then the corresponding kernel is

∀x, t ∈ [0, 1] , K (x, t) =
1

(2β)!
B2β(x− t− ⌊x− t⌋) ,

where B2β is the (2β)-th Bernoulli polynomiala, e.g.,

B2(x) = x2 − x + 1/6 , B4(x) = x4 − 2x3 + x2 − 1/30 , . . .

ahttps://en.wikipedia.org/wiki/Bernoulli_polynomials

Proof left as exercice (check Fourier expansion of Bernoulli polynomials).
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Example 1: [0, 1] (6/6)

Example: exponential decay of eigenvalues

For any ρ ∈ R+, let

{
κ̂0 = 0 ,

κ̂2n = e−ρn for n ≥ 1 .

Then the corresponding kernel is

∀x, t ∈ [0, 1] , K (x, t) =

√
2eρ cos (2π(x− t))− 1

e2ρ − 2eρ cos (2π(x− t)) + 1
.

Proof left as exercice (or check Bach, 2013, p.21).
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Example 2: Sd−1 (1/6)

Consider the unit sphere in Rd :

X = Sd−1 =
{
x ∈ Rd : ∥ x ∥ = 1

}

Let ν be the Lebesgue measure on Sd−1. Note that:

ν(Sd−1) =
2π

d
2

Γ
(
d
2

)
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Example 2: Sd−1 (2/6)

Let a p.d. kernel on Sd−1 of the form:

K (x, t) = φ
(
x⊤t
)
,

where φ : [−1, 1]→ R is continuous.

To write Mercer’s expansion we need to find the eigenfunctions by
solving ∫

Sd−1

φ
(
x⊤t
)
ψ (t) dν(t) = λψ (x)

For that purpose study polynomials that solve the Laplace equation:

∆f =
∂2f

∂x21
+ . . .+

∂2f

∂x2d
= 0

where ∆ is the Laplacian operator on Rd .
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Example 2: Sd−1 (3/6)

Definition (Spherical harmonics)

A homogeneous polynomial of degree k ≥ 0 in Rd whose Laplacian
vanishes is called a homogeneous harmonic of order k .

A spherical harmonic of order k is a homogeneous harmonic of order
k on the unit sphere Sd−1

The set Yk(d) of spherical harmonics is a vector space of dimension

N(n, k) = dim (Yk(d)) =
(2k + d − 2)(k + d − 3)!

k!(d − 2)!
.
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Example 2: Sd−1 (4/6)

Spherical harmonics form the Mercer’s eigenfunctions, because:

Theorem (Funk-Hecke) (e.g., Müller, 1998, p.30)

For any x ∈ Sd−1, Yk ∈ Yk(d) and φ ∈ C ([−1, 1]),
∫

Sd−1

φ
(
x⊤t
)
Yk (t) dν(t) = λkYk (x)

where

λk = ν
(
Sd−2

)∫ 1

−1
φ(t)Pk(d ; t)(1− t2)

d−3
2 dt

and Pk(d ; t) is the Legendre polynomial of degree k in dimension d .

When φ ∈ C k ([−1, 1]) we have Rodrigues rule (Müller, 1998, p.23):

λk = ν
(
Sd−2

) Γ
(
d−1
2

)

2kΓ
(
k + d−1

2

)
∫ 1

−1
φ(k)(t)

(
1− t2

)k+ d−3
2 dt
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Example 2: Sd−1 (5/6)

For any k ≥ 0, let {Yk,j(d ; x)}N(d ;k)
j=1 an orthonormal basis of Yk(d)

Spherical harmonics
{
{Yk,j(d ; x)}N(d ;k)

j=1

}∞

k=0
form an orthonormal

basis for L2
(
Sd−1

)

Therefore, for any kernel K (x, t) = φ
(
x⊤t
)
on Sd−1 the Mercer

eigenvalues are exactly the λk ’s, with corresponding orthonormal

eigenfunctions {Yk,j(d ; x)}N(d ;k)
j=1 .

Note that eigenfunctions are the same for different φ’s, only the
eigenvalues change
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Example 2: Sd−1 (6/6)

Take d = 2 and K (x, t) =
(
1 + x⊤t

)2
for x, t ∈ S1

Using Rodrigeus rule we get 3 nonzero eigenvalues:

λ0 = 3π , λ1 = 2π , λ2 =
π

2

with multiplicities 1, 2 and 2

Corresponding eigenfunctions:

(
1√
2π
,
x1√
π
,
x2√
π
,
x1x2√
π
,
x21 − x22√

π

)

The resulting Mercer feature map is

Φ(x) =

(√
3

2
,
√
2x1,
√
2x2,
√
2x1x2,

x21 − x22√
2

)

Obviously, Φ(x)⊤Φ(t) = K (x, t) for x, t ∈ S1 (exercice)
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RKHS of Mercer kernels

Let X be a compact metric space, and K a Mercer kernel on X
(symmetric, continuous and positive definite).

We have expressed a decomposition of the kernel in terms of the
eigenfunctions of the linear convolution operator.

In some cases this provides an intuitive feature space.

The kernel also has a RKHS, like any p.d. kernel.

Can we get an intuition of the RKHS norm in terms of the
eigenfunctions and eigenvalues of the convolution operator?
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Reminder: expansion of Mercer kernel

Theorem

Denote by LK the linear operator of L2ν (X ) defined by:

∀f ∈ L2ν (X ) , (LK f ) (x) =
∫

K (x, t) f (t) dν (t) .

Let (λ1, λ2, . . .) denote the eigenvalues of LK in decreasing order, and
(ψ1, ψ2, . . .) the corresponding eigenfunctions. Then it holds that for any
x, y ∈ X :

K (x, y) =
∞∑

k=1

λkψk (x)ψk (y) = ⟨Φ (x) ,Φ (y)⟩ℓ2 ,

with Φ : X 7→ ℓ2 defined par Φ (x) =
(√
λkψk (x)

)
k∈N.
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RKHS construction

Theorem

Assuming that all eigenvalues are positive, the RKHS is the Hilbert
space:

H =

{
f =

∞∑

i=1

aiψi , with
∞∑

k=1

a2k
λk

<∞
}

endowed with the inner product:

⟨f , g⟩H =
∞∑

k=1

akbk
λk

, for f =
∑

k

akψk , g =
∑

k

bkψk .

Remark
If some eigenvalues are equal to zero, then the result and the proof remain valid
on the subspace spanned by the eigenfunctions with positive eigenvalues.
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Proof (1/6)

Sketch

In order to show that H is the RKHS of the kernel K we need to show
that:

1 it is a Hilbert space of functions from X to R,
2 for any x ∈ X , Kx ∈ H,
3 for any x ∈ X and f ∈ H, f (x) = ⟨f ,Kx⟩H .
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Proof (2/6)

H is a Hilbert space

Indeed the function:

L
1
2
K :L2ν (X )→ H

∞∑

i=1

aiψi 7→
∞∑

i=1

ai
√
λiψi

is an isometric isomorphism, therefore H is a Hilbert space, like L2ν (X ).
□
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Proof (3/6)

H is a space of continuous functions

Let fn =
∑n

i=1 aiψi ∈ H. These functions converge to f in H. Hence,
they also converge uniformly to f on X (see below).
Moreover, the functions ψi are continuous (eigenvectors of a ’smoothing’
operator), therefore fn is also continuous, for all n. Hence, since uniform
convergence preserves continuity, it must be that f is continuous.

Convergence in ∥ . ∥H implies uniform convergence on X
For any f =

∑∞
i=1 aiψi ∈ H, and x ∈ X , we have (if f (x) makes sense):

| f (x) | =
∣∣∣∣∣

∞∑

i=1

aiψi (x)

∣∣∣∣∣ =
∣∣∣∣∣

∞∑

i=1

ai√
λi

√
λiψi (x)

∣∣∣∣∣

≤
( ∞∑

i=1

a2i
λi

) 1
2

.

( ∞∑

i=1

λiψi (x)
2

) 1
2

= ∥ f ∥HK (x, x)
1
2 = ∥ f ∥H

√
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Proof (5/6)

Kx ∈ H
For any x ∈ X let, for all i , ai = λiψi (x) and define φx :=

∑∞
i=1 aiψi .

We have:

∞∑

i=1

a2i
λi

=

Mercer’s thm︷ ︸︸ ︷
∞∑

i=1

λiψi (x)
2 = K (x, x) <∞,

therefore φx ∈ H. As seen earlier the convergence in H implies (uniform)
pointwise convergence, therefore for any t ∈ X :

φx (t) =
∞∑

i=1

aiψi (t) =

Mercer’s thm︷ ︸︸ ︷
∞∑

i=1

λiψi (x)ψi (t) = K (x, t),

therefore φx = Kx ∈ H. □
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Proof (6/6)

f (x) = ⟨f ,Kx⟩H
Let f =

∑∞
i=1 aiψi ∈ H, et x ∈ X . We have seen that:

Kx =
∞∑

i=1

λiψi (x)ψi ,

therefore:

⟨f ,Kx⟩H =
∞∑

i=1

λiψi (x) ai
λi

=
∞∑

i=1

aiψi (x) = f (x) ,

which concludes the proof. □
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Remarks

Although H was built from the eigenfunctions of LK , which depend
on the choice of the measure dν (x), we know by uniqueness of the
RKHS that H is independant of ν and LK .

Mercer theorem provides a concrete way to build the RKHS, by
taking linear combinations of the eigenfunctions of LK (with
adequately chosen weights).

The eigenfunctions (ψi )i∈N form an orthogonal basis of the RKHS:

⟨ψi , ψj⟩H = 0 si i ̸= j , ∥ψi ∥H =
1√
λi
.

The RKHS is a well-defined ellipsoid with axes given by the
eigenfunctions.
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Summary
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Example: Sobolev space of periodic functions on [0, 1]

Corollary

For β ∈ N∗, let the Mercer kernel with polynomially decaying eigenvalues:

∀x, t ∈ [0, 1] , K (x, t) =
1

(2β)!
B2β(x− t− ⌊x− t⌋) ,

where B2β is the (2β)-th Bernoulli polynomial. Then the RKHS is the
set of functions f : [0, 1]→ R whose Fourier coefficients satisfy:

∥ f ∥2H :=
∞∑

n=1

(
f̂ 22n−1 + f̂ 22n

)
n2β < +∞ .

This is the Sobolev space of functions f such that f (i) is absolutely
continuous and f (i)(0) = f (i)(1), for i = 0, . . . , β − 1, and

∥ f ∥2H = π−2β

∫ 1

0

(
f (β)(x)

)2
dx .
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Proof sketch

The characterization of the RKHS in terms of Fourier coefficients is
a direct application of the previous result, noting that the Fourier
basis is an ONB of eigenfunctions of LK , and that the corresponding
eigenvalues are n−2β.

For the characterization as a Sobolev space, we use Parceval
equality to rewrite the Sobolev norm as the ℓ2 norm of the Fourier
coefficients of f (β), which are (roughly) the Fourier coefficients of f
multiplied by nβ. For details, see Tsybakov (2004, Proposition 1.14).
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Outline

5 The Kernel Jungle
Green, Mercer, Herglotz, Bochner and friends

Green kernels
Mercer kernels
Shift-invariant kernels
Generalization to semigroups
Proof of Bochner’s theorem
Proof of Mercer’s theorem
Convergence rates of KRR for Mercer kernels

Kernels for probabilistic models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs
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Motivation

Let us suppose that X is not compact, for example X = Rd .

In that case, the eigenvalues of:

∫

X
K (x, t)ψ (t) dν(t) = λψ (t)

are not necessarily countable, Mercer theorem does not hold.

Fourier transforms provide a convenient extension for translation
invariant kernels, i.e., kernels of the form K (x, y) = φ(x− y).

Harmonic analysis also bring kernels well beyond vector spaces, e.g.,
groups and semigroups
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Translation invariant kernels on Rd

Definition

A kernel K : Rd × Rd 7→ R is called translation invariant (t.i.), or
shift-invariant, if it only depends on the difference between its argument,
i.e.:

∀x, y ∈ Rd , K (x, y) = φ (x− y)

for some function φ : Rd → R. Such a function φ is called positive
definite if the corresponding kernel K is p.d.

Theorem (Bochner)

A continuous function φ : Rd → R is p.d. if and only if it is the
Fourier-Stieltjes transform of a symmetric and positive finite Borel
measure µ ∈ M(Rd), i.e:

∀ω ∈ Rd , φ(ω) =

∫

Rd

e−iω⊤xdµ(x)
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Translation invariant kernels on Rd

Definition

A kernel K : Rd × Rd 7→ R is called translation invariant (t.i.), or
shift-invariant, if it only depends on the difference between its argument,
i.e.:

∀x, y ∈ Rd , K (x, y) = φ (x− y)

for some function φ : Rd → R. Such a function φ is called positive
definite if the corresponding kernel K is p.d.

Theorem (Bochner)

A continuous function φ : Rd → R is p.d. if and only if it is the
Fourier-Stieltjes transform of a symmetric and positive finite Borel
measure µ ∈ M(Rd), i.e:

∀ω ∈ Rd , φ(ω) =

∫

Rd

e−iω⊤xdµ(x)

252 / 785



RKHS of translation invariant kernels

Theorem

Let K (x, t) = φ(x− t) be a translation invariant p.d. kernel, such that φ
is integrable on Rd as well as its Fourier transform φ̂. The subset H of
L2
(
Rd
)
that consists of integrable and continuous functions f such that:

∥ f ∥2H :=
1

(2π)d

∫

Rd

∣∣∣ f̂ (ω)
∣∣∣
2

φ̂(ω)
dω < +∞ ,

endowed with the inner product:

⟨f , g⟩H :=
1

(2π)d

∫

Rd

f̂ (ω)ĝ (ω)

φ̂(ω)
dω

is a RKHS with K as r.k.
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Proof

H is a Hilbert space: exercise.

For x ∈ Rd , Kx(y) = K (x, y) = φ(x− y) therefore:

K̂x(ω) =

∫
e−iω⊤uφ(u− x)du = e−iω⊤xφ̂(ω) .

This leads to Kx ∈ H, because:

∫

Rd

∣∣∣ K̂x(ω)
∣∣∣
2

φ̂(ω)
≤
∫

Rd

| φ̂(ω) | <∞,

Moreover, if f ∈ H and x ∈ Rd , we have:

⟨f ,Kx⟩H =
1

(2π)d

∫

Rd

K̂x(ω)f̂ (ω)

φ̂(ω)
dω =

1

(2π)d

∫

Rd

f̂ (ω)e−iω⊤xdω

= f (x)

□
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Example

Gaussian kernel

K (x , y) = e−
(x−y)2

2σ2

corresponds to:

φ(t) = e−
t2

2σ2

φ̂ (ω) = e−
σ2ω2

2

and

H =

{
f :

∫ ∣∣∣ f̂ (ω)
∣∣∣
2
e

σ2ω2

2 dω <∞
}
.

In particular, all functions in H are infinitely differentiable with all
derivatives in L2.
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Example

Laplace kernel

K (x , y) =
1

2
e−γ| x−y |

corresponds to:

φ(to) =
1

2
e−γ| t |

φ̂ (ω) =
γ

γ2 + ω2

and

H =

{
f :

∫ ∣∣∣ f̂ (ω)
∣∣∣
2
(
γ2 + ω2

)

γ
dω <∞

}
,

the set of functions L2 differentiable with derivatives in L2 (Sobolev
norm).
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Example

Low-frequency filter

K (x , y) =
sin (Ω(x − y))

π(x − y)

corresponds to:

φ(t) =
sin (Ωt)

πt
φ̂ (ω) = 1[−Ω,Ω](ω)

and

H =

{
f :

∫

|ω |>Ω

∣∣∣ f̂ (ω)
∣∣∣
2
dω = 0

}
,

the set of functions whose spectrum is included in [−Ω,Ω].
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Recap on Green, Mercer, Bochner families

Up to specific assumptions for each of the following kernel families,

Kernel RKHS H
Green Green func. of D∗D L2(X ) with ⟨Df ,Dg⟩L2(X )

Mercer
∞∑

k=1

λkψk(x)ψk(y)

{
f =

∞∑

k=1

akψk :
∞∑

k=1

a2k
λk

< +∞
}

Fourier κ(x−y) ∝∫
κ̂(ω)e iω(x−y)dω




f ∈ L2(Rd)︸ ︷︷ ︸

+continuous
+integrable

:

∫ |f̂ (ω)|2
κ̂(ω)

dω < +∞




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Recap on Green, Mercer, Bochner families

Up to specific assumptions for each of the following kernel families,

Kernel Squared Norm ∥.∥2H
Green Green func. of D∗D ∥Df ∥2L2(X )

Mercer
∞∑

k=1

λkψk(x)ψk(y)
∞∑

k=1

a2k
λk

for f =
∑∞

k=1 akψk

Fourier κ(x − y)
1

(2π)d

∫ |f̂ (ω)|2
κ̂(ω)

dω
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Generalization to semigroups (cf Berg et al., 1983)

Definition

A semigroup (S , ◦) is a nonempty set S equipped with an
associative composition ◦ and a neutral element e.

A semigroup with involution (S , ◦, ∗) is a semigroup (S , ◦) together
with a mapping ∗ : S → S called involution satisfying:

1 (s ◦ t)∗ = t∗ ◦ s∗, for s, t ∈ S .
2 (s∗)∗ = s for s ∈ S .

Examples

Any group (G , ◦) is a semigroup with involution when we define
s∗ = s−1.

Any abelian semigroup (S ,+) is a semigroup with involution when
we define s∗ = s, the identical involution.
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Positive definite functions on semigroups

Definition

Let (S , ◦, ∗) be a semigroup with involution. A function φ : S → R is
called positive definite if the function:

∀s, t ∈ S , K (s, t) = φ (s∗ ◦ t)

is a p.d. kernel on S .

Example: translation invariant kernels
(
Rd ,+,−

)
is an abelian group with involution. A function φ : Rd → R

is p.d. if the function
K (x, y) = φ(x− y)

is p.d. on Rd (translation invariant kernels).
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Semicharacters

Definition

A function ρ : S → C on an abelian semigroup with involution (S ,+, ∗)
is called a semicharacter if

1 ρ(0) = 1,

2 ρ(s + t) = ρ(s)ρ(t) for s, t ∈ S ,

3 ρ (s∗) = ρ(s) for s ∈ S .

The set of semicharacters on S is denoted by S∗.

Remarks

If ∗ is the identity, a semicharacter is automatically real-valued.

If (S ,+) is an abelian group and s∗ = −s, a semicharacter has its
values in the circle group {z ∈ C | | z | = 1} and is a group character.
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Semicharacters are p.d.

Lemma

Define K (s, t) := ρ(s + t⋆). Then, the semicharacter ρ is p.d., in the
sense that

K (s, t) = K (t, s),∑n
i ,j=1 aiajK (xi , xj) ≥ 0,

Proof

Direct from definition, e.g.,

n∑

i ,j=1

aiajρ
(
xi + x∗j

)
=

n∑

i ,j=1

aiajρ (xi ) ρ (xj) ≥ 0 .

Examples

φ(t) = eβt on (R,+, Id).
φ(t) = e iωt on (R,+,−).

264 / 785



Integral representation of p.d. functions

Definition
An function α : S → R on a semigroup with involution is called an absolute
value if (i) α(e) = 1, (ii)α(s ◦ t) ≤ α(s)α(t), and (iii) α (s∗) = α(s).

A function f : S → R is called exponentially bounded if there exists an
absolute value α and a constant C > 0 s.t. | f (s) | ≤ Cα(s) for s ∈ S .

Theorem

Let (S ,+, ∗) an abelian semigroup with involution. A function φ : S → R is p.d.
and exponentially bounded (resp. bounded) if and only if it has a representation
of the form:

φ(s) =

∫

S∗
ρ(s)dµ(ρ) .

where µ is a Radon measure with compact support on S∗ (resp. on Ŝ, the set
of bounded semicharacters).
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Proof

Sketch (details in Berg et al., 1983, Theorem 4.2.5)

For an absolute value α, the set Pα
1 of α-bounded p.d. functions

that satisfy φ(0) = 1 is a compact convex set whose extreme points
are precisely the α-bounded semicharacters.

If φ is p.d. and exponentially bounded then there exists an absolute
value α such that φ(0)−1φ ∈ Pα

1 .

By the Krein-Milman theorem there exits a Radon probability
measure on Pα

1 having φ(0)−1φ as barycentre.

Remarks

The result is not true without the assumption of exponentially
boundedsemicharacters.

In the case of abelian groups with s∗ = −s this reduces to
Bochner’s theorem for discrete abelian groups, cf. Rudin (1962).
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Example 1: (R+,+, Id)

Semicharacters

S = (R+,+, Id) is an abelian semigroup.

P.d. functions are nonnegative, because φ(x) = φ
(√

x
)2
.

The set of bounded semicharacters is exactly the set of functions:

s ∈ R+ 7→ ρa(s) = e−as ,

for a ∈ [0,+∞] (left as exercice).

Non-bounded semicharacters are more difficult to characterize; in
fact there exist nonmeasurable solutions of the equation
h(x + y) = h(x)h(y).
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Example 1: (R+,+, Id) (cont.)

P.d. functions

By the integral representation theorem for bounded semi-characters
we obtain that a function φ : R+ → R is p.d. and bounded if and
only if it has the form:

φ(s) =

∫ ∞

0
e−asdµ(a) + bρ∞(s)

where µ ∈Mb
+ (R+) and b ≥ 0.

The first term is the Laplace transform of µ. φ is p.d., bounded and
continuous iff it is the Laplace transform of a measure inMb

+ (R).
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Example 2: Semigroup kernels for finite measures (1/6)

Setting

We assume that data to be processed are “bags-of-points”, i.e., sets
of points (with repeats) of a space U .
Example : a finite-length string as a set of k-mers.

How to define a p.d. kernel between any two bags that only depends
on the union of the bags?

See details and proofs in Cuturi et al. (2005).
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Example 2: Semigroup kernels for finite measures (2/6)

Semigroup of bounded measures

We can represent any bag-of-point x as a finite measure on U :

x =
∑

i

aiδxi ,

where ai is the number of occurrences on xi in the bag.

The measure that represents the union of two bags is the sum of the
measures that represent each individual bag.

This suggests to look at the semigroup
(
Mb

+ (U) ,+, Id
)
of bounded

Radon measures on U and to search for p.d. functions φ on this
semigroup.
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Example 2: Semigroup kernels for finite measures (3/6)

Semicharacters

For any Borel measurable function f : U → R the function
ρf :Mb

+ (U)→ R defined by:

ρf (µ) = eµ[f ]

is a semicharacter on
(
Mb

+ (U) ,+
)
.

Conversely, ρ is continuous semicharacter (for the topology of weak
convergence) if and only if there exists a continuous function
f : U → R such that ρ = ρf .

No such characterization for non-continuous characters, even
bounded.
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Example 2: Semigroup kernels for finite measures (4/6)

Corollary

Let U be a Hausdorff space. For any Radon measure µ ∈Mc
+ (C (U))

with compact support on the Hausdorff space of continuous real-valued
functions on U endowed with the topology of pointwise convergence, the
following function K is a continuous p.d. kernel onMb

+ (U) (endowed
with the topology of weak convergence):

K (µ, ν) =

∫

C(X )
eµ[f ]+ν[f ]dµ(f ) .

Remarks
The converse is not true: there exist continuous p.d. kernels that do not have
this integral representation (it might include non-continuous semicharacters)
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Example 2: Semigroup kernels for finite measures (5/6)

Example : entropy kernel

Let X be the set of probability densities (w.r.t. some reference
measure) on U with finite entropy:

h(x) = −
∫

U
x ln x .

Then the following entropy kernel is a p.d. kernel on X for all
β > 0:

K
(
x, x′

)
= e−βh( x+x

2 ) .

Remark: only valid for densities (e.g., for a kernel density estimator
from a bag-of-parts)
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Example 2: Semigroup kernels for finite measures (6/6)

Examples : inverse generalized variance kernel

Let U = Rd andMV
+ (U) be the set of finite measure µ with second

order moment and non-singular variance

Σ(µ) = µ
[
xx⊤

]
− µ [x ]µ [x ]⊤ .

Then the following function is a p.d. kernel onMV
+ (U), called the

inverse generalized variance kernel:

K
(
µ, µ′

)
=

1

detΣ
(
µ+µ′

2

) .

Generalization possible with regularization and kernel trick.
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Application of semigroup kernel

Weighted linear PCA of two different measures, with the first PC shown.
Variances captured by the first and second PC are shown. The
generalized variance kernel is the inverse of the product of the two values.
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Kernelization of the IGV kernel

Motivations

Gaussian distributions may be poor models.

The method fails in large dimension

Solution
1 Regularization:

Kλ

(
µ, µ′

)
=

1

det
(
Σ
(
µ+µ′

2

)
+ λId

) .

2 Kernel trick: the non-zero eigenvalues of UU⊤ and U⊤U are the
same =⇒ replace the covariance matrix by the centered Gram
matrix (technical details in Cuturi et al., 2005).
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Illustration of kernel IGV kernel
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Semigroup kernel remarks

Motivations

A very general formalism to exploit an algebraic structure of the
data.

Kernel IVG kernel has given good results for character recognition
from a subsampled image.

The main motivation is more generally to develop kernels for
complex objects from which simple “patches” can be extracted.

The extension to nonabelian groups (e.g., permutation in the
symmetric group) might find natural applications.
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Translation invariant kernels on Z

Definition

A kernel K : Z× Z 7→ R is called translation invariant (t.i.), or
shift-invariant, if it only depends on the difference between its argument,
i.e.:

∀x, y ∈ Z , K (x, y) = ax−y

for some sequence {an}n∈Z. Such a sequence is called positive definite if
the corresponding kernel K is p.d.

Theorem (Herglotz)

A sequence {an}n∈Z is p.d. if and only if it is the Fourier-Stieltjes
transform of a positive measure µ ∈ M(T), the set of finite Borel
measures on the torus [0, 2π] with 0 and 2π identified.
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Translation invariant kernels on Z

Definition
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Fourier-Stieltjes transform on the torus

Let T the torus [0, 2π] with 0 and 2π identified

C (T) the set of continuous functions on T
M(T) the finite complex Borel measures2 on T
M(T) can be identified as the dual space (C (T))∗: for any
continuous/bounded linear functional ψ : C (T)→ C there exists
µ ∈ M(T) such that ψ(f ) = 1

2π

∫
T f (t)dµ(t) (Riesz theorem).

Definition (Fourier-Stieltjes coefficients)

For any µ ∈ M(T), the Fourier-Stieltjes coefficients of µ is the sequence:

∀n ∈ Z , µ̂(n) =
1

2π

∫

T
e−intdµ(t)

This extends the standard Fourier transform for integrable functions by
taking dµ(t) = f (t)dt.

2a measure defined on all open sets
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Examples

Diagonal kernel:

µ = dt , an = µ̂(n) =
1

2π

∫

T
e intdt =

{
1 if n = 0 ,

0 otherwise.

The resulting kernel is K (x, t) = 1(x = t).

Constant kernel: for C ≥ 0,

µ = 2πCδ0 , an = µ̂(n) = C

∫

T
e intδ0(t) = C ,

resulting in K (x, t) = C
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Proof of Herglotz’s theorem: ⇐
If an = µ̂(n) for µ ∈ M(T) positive, then for any n ∈ N, x1, . . . , xn ∈ Z
and z1, . . . , zn ∈ R (or C) :

n∑

i=1

n∑

j=1

zi z̄jaxi−xj =
1

2π

n∑

i=1

n∑

j=1

zi z̄j

∫

T
e−i(xi−xj )tdµ(t)

=
1

2π

n∑

i=1

n∑

j=1

zi z̄j

∫

T
e−ixi te ixj tdµ(t)

=
1

2π

∫

T
|

n∑

j=1

zje
−ixj t |2dµ(t)

≥ 0.
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Proof of Herglotz’s theorem: ⇒ (1/4)

Let {an}n∈Z a p.d. sequence

For a given t ∈ R and N ∈ N let {zn}n∈Z be

zn =

{
e int if | n | ≤ N ,

0 otherwise.

Since {an}n∈Z is p.d. we get:

0 ≤
N∑

k=−N

N∑

l=−N

ak−lzk z̄l =
N∑

k=−N

N∑

l=−N

ak−le
i(k−l)t

=
2N∑

k=−2N

(2N + 1− |k |)ake ikt

= (2N + 1)
∑

k∈Z
max

(
0, 1− |k|

2N + 1

)
ake

ikt

︸ ︷︷ ︸
σ2N(t)

284 / 785



Proof of Herglotz’s theorem: ⇒ (2/4)

dµN = σN(t)dt is a positive measure (for N even) and satisfies

µ̂N(n) =
1

2π

N∑

j=−N

aj

(
1− |j |

N + 1

)∫

T
e i(n−j)t = an max

(
0, 1− |n|

N + 1

)

Moreover

∥µN ∥M(T) = sup
∥ f ∥∞≤1

∫

T
f (t)σN(t)dt

=

∫

T
σN(t)dt (take f = 1 because σN(t) ≥ 0)

=
N∑

n=−N

∫

T
an

(
1− |n|

N + 1

)
e intdt

= a0
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Proof of Herglotz’s theorem: ⇒ (3/4)

For any trigonometric polynomial of the form
P(t) =

∑K
k=−K bke

ikt , with Fourier coefficient P̂(n) = bn, we have

lim
N→+∞

∫

T
P(t)dµN(t)

= lim
N→+∞

K∑

k=−K

N∑

n=−N

∫

T
anbk

(
1− |n|

N + 1

)
e i(n−k)tdt

=
K∑

k=−K

akbk lim
N→+∞

(
1− |n|

N + 1

)

=
K∑

k=−K

akbk

=
∑

k∈Z
ak P̂(k)
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Proof of Herglotz’s theorem: ⇒ (4/4)

This shows that Ψ(P) =
∑

k∈Z ak P̂(k) is a linear functional over
trigonometric polynomials, with norm ≤ a0
It can be extended to all continuous functions because trigonometric
polynomials are dense in C (T)
By Riesz representation theorem, there exists a measure µ ∈ M(T)
such that ∥µ ∥M(T) ≤ a0

∀f ∈ C (T) , Ψ(f ) =

∫

T
f (t)dµ(t)

Taking f (t) = e int gives

µ̂(n) =

∫

T
e intdµ(t) = Ψ(e int) = an

Furthermore µ is a positive measure because if f ≥ 0
∫

T
f (t)dµ(t) = Ψ(f ) = lim

n→+∞
Ψ(Pn) = lim

n,k→+∞
Ψk(Pn) ≥ 0 □
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Translation invariant kernels on Rd

Definition

A kernel K : Rd × Rd 7→ R is called translation invariant (t.i.), or
shift-invariant, if it only depends on the difference between its argument,
i.e.:

∀x, y ∈ Rd , K (x, y) = φ (x− y)

for some function φ : Rd → R. Such a function φ is called positive
definite if the corresponding kernel K is p.d.

Theorem (Bochner)

A continuous function φ : Rd → R is p.d. if and only if it is the
Fourier-Stieltjes transform of a symmetric and positive finite Borel
measure µ ∈ M(Rd), i.e:

∀ω ∈ Rd , φ(ω) =

∫

Rd

e−iω⊤xdµ(x)
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Translation invariant kernels on Rd

Definition

A kernel K : Rd × Rd 7→ R is called translation invariant (t.i.), or
shift-invariant, if it only depends on the difference between its argument,
i.e.:

∀x, y ∈ Rd , K (x, y) = φ (x− y)

for some function φ : Rd → R. Such a function φ is called positive
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∀ω ∈ Rd , φ(ω) =

∫

Rd

e−iω⊤xdµ(x)
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Fourier-Stieltjes transform on Rd

C0(Rd) the set of continuous functions on Rd that vanish at infinity

M(Rd) the finite complex Borel measures on Rd

M(Rd) can be identified as the dual space
(
C0(Rd)

)∗
: for any

continuous/bounded linear functional ψ : C0(Rd)→ C there exists
µ ∈ M(Rd) such that ψ(f ) =

∫
Rd f (t)dµ(t) (Riesz theorem).
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Fourier-Stieltjes transform on Rd

This extends the standard Fourier transform for integrable functions
by taking dµ(x) = f (x)dx.

For µ ∈ M(Rd), µ̂ is still uniformly continuous, but µ̂(ω) does not
necessarily go to 0 at infinity (e.g., take the Dirac µ = δ0, then
µ̂(ω) = 1 for all ω)

Parseval’s formula: if µ ∈ M(Rd), and both g , ĝ are in L1(Rd), then

∫

Rd

g(x)dµ(x) =
1

(2π)d

∫

Rd

ĝ(ω)µ̂(−ω)dω .

In particular, if g ∈ L1(Rd) ∩ L2(Rd),

∫

Rd

g(x)2dx =
1

(2π)d

∫

Rd

ĝ(ω)2dω .
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Proof of Bochner’s theorem: ⇐
If φ = µ̂ for some µ ∈ M(T) positive, then for any n ∈ N,
x1, . . . , xn ∈ Rd and z1, . . . , zn ∈ R (or C) :

n∑

i=1

n∑

j=1

zi z̄jφ (xi − xj) =
n∑

i=1

n∑

j=1

zi z̄j

∫

Rd

e−i(xi−xj )
⊤tdµ(t)

=
n∑

i=1

n∑

j=1

zi z̄j

∫

Rd

e−ix⊤i te ix
⊤
j tdµ(t)

=

∫

Rd

|
n∑

j=1

zje
−ix⊤j t|2dµ(t)

≥ 0.

If µ is symmetric then, in addition, φ is real-valued.
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Proof of Bochner’s theorem: ⇒ (1/5)

Lemma

Let φ : R→ R continuous. If there exists C ≥ 0 such that

∣∣∣∣
1

2π

∫

R
ĝ(ξ)φ(−ξ)dξ

∣∣∣∣ ≤ C sup
x∈R
| g(x) |

for every continuous function g ∈ L1(R) such that ĝ is continuous and
has compact support, then φ is the Fourier-Stieljes transform of a
measure µ ∈ M(R).

Proof: Let G ⊂ C0(R) be the set of functions g ∈ L1(R) such that ĝ is
continuous and has compact support. Ψ : g 7→ 1

2π

∫
R ĝ(ξ)φ(−ξ)dξ is

linear and continuous on G, and can be extended to C0(R) by density of
G. By Riesz theorem, there exists µ ∈ M(R) such that
Ψ(g) =

∫
R g(x)dµ(x) = 1

2π

∫
R ĝ(ξ)µ̂(−ξ)dξ, using Parceval’s formula

for the second equality. This must hold for all g , so φ = µ̂. □
Note: the converse is also true.
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Proof of Bochner’s theorem: ⇒ (2/5)

We consider d = 1. Generalization to d > 1 is trivial.

Let φ : R→ R continuous and p.d.

For any λ > 0, the sequence {φ(nλ)}n∈Z is p.d., so by Herglotz’s
theorem there exists a positive measure µλ ∈ M(T) such that

φ(λn) = µ̂λ(n) ,

and ∥µλ ∥M(T) = µ̂λ(0) = φ(0).

Let g ∈ L1(R) continuous such that ĝ is continuous and has
compact support.

For any ϵ > 0 there exists λ > 0 such that

∣∣∣∣
1

2π

∫

R
ĝ(ξ)φ(−ξ)dξ

∣∣∣∣ <
∣∣∣∣∣
λ

2π

∑

n∈Z
ĝ(λn)φ(−λn)

∣∣∣∣∣+ ϵ ,

by approximating the integral by its Riemann sums (where the width
of each rectangle is λ).
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Proof of Bochner’s theorem: ⇒ (3/5)

For t ∈ T let:

Gλ(t) =
∑

m∈Z
g

(
t + 2πm

λ

)

.

Given the regularity and decay of g , we can find a sufficiently small
λ to ensure

sup
t∈T
|Gλ(t) | ≤ sup

x∈R
| g(x) |+ ϵ
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Proof of Bochner’s theorem: ⇒ (3/5)

In addition, for any n ∈ Z:

Ĝλ(n) =
1

2π

∫

T
e−intGλ(t)dt

=
1

2π

∑

m∈Z

∫ 2π

0
e−intg

(
t + 2πm

λ

)
dt

=
λ

2π

∑

m∈Z

∫ 2π(m+1)
λ

2πm
λ

e−in(λu+2πm)g(u)du

=
λ

2π

∑

m∈Z

∫ 2π(m+1)
λ

2πm
λ

e−inλug(u)du

=
λ

2π

∫

R
e−inλug(u)du

=
λ

2π
ĝ(λn)
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Proof of Bochner’s theorem: ⇒ (4/5)

This gives:

∣∣∣∣∣
λ

2π

∑

n∈Z
ĝ(λn)φ(−λn)

∣∣∣∣∣ =
∣∣∣∣∣
∑

n∈Z
Ĝλ(n)µ̂λ(−n)

∣∣∣∣∣

=

∣∣∣∣
1

2π

∫

T
Gλ(t)dµλ(t)

∣∣∣∣ (Parceval)

≤ ∥µλ ∥M(T) sup
t∈T
|Gλ(t) |

≤ C sup
t∈T
|Gλ(t) |

≤ C sup
x∈R
| g(x) |+ Cϵ

with C = φ(0).
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Proof of Bochner’s theorem: ⇒ (5/5)

Putting it all together gives:

∣∣∣∣
1

2π

∫

R
ĝ(ξ)φ(−ξ)dξ

∣∣∣∣ < C sup
x∈R
| g(x) |+ (C + 1)ϵ

This is true for all ϵ > 0 which implies

∣∣∣∣
1

2π

∫

R
ĝ(ξ)φ(−ξ)dξ

∣∣∣∣ ≤ C sup
x∈R
| g(x) |

We conclude from the lemma that φ = µ̂ for some µ ∈ M(R), which
satisfies

1

2π

∫

R
ĝ(ξ)φ(−ξ)dξ =

∫

R
g(x)dµ(x)

When g ≥ 0, this is approximated by 1
2π

∫
T Gλ(t)dµλ(t) for small λ,

which is ≥ 0 because µλ is a positive measure and Gλ ≥ 0 like g .
Consequently, µ is a positive measure. □
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An important lemma

The linear operator

Let ν be any Borel measure on X , and L2ν (X ) the Hilbert space of
(equivalence classes of) square integrable functions on X .
For any function K : X 2 7→ R, let the transform:

∀f ∈ L2ν (X ) , (LK f ) (x) =

∫
K (x, t) f (t) dν (t) .

Lemma

If K is a Mercer kernel, then LK is a compact and bounded linear
operator over L2ν (X ), self-adjoint and positive.
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Proof (1/6)

LK is a mapping from L2ν (X ) to L2ν (X )
For any f ∈ L2ν (X ) and (x1, x1) ∈ X 2:

| (LK f ) (x1)− (LK f ) (x2) | =
∣∣∣∣
∫

(K (x1, t)− K (x2, t)) f (t) dν (t)

∣∣∣∣
= ⟨Kx1 − Kx2 , f ⟩L2ν(X )

≤ ∥Kx1 − Kx2 ∥L2ν(X )∥ f ∥L2ν(X )

(Cauchy-Schwarz)

≤
√
ν (X )max

t∈X
|K (x1, t)− K (x2, t) | ∥ f ∥L2ν(X ).

K being continuous and X compact, K is uniformly continuous,
therefore LK f is continuous. In particular, LK f ∈ L2ν (X ) (with the slight
abuse of notation C (X ) ⊂ L2ν (X )). □
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Proof (2/6)

LK is linear and continuous

Linearity is obvious (by definition of LK and linearity of the integral).

For continuity, we observe that for all f ∈ L2ν (X ) and x ∈ X :

| (LK f ) (x) | =
∣∣∣∣
∫

K (x, t) f (t) dν (t)

∣∣∣∣

≤
√
ν (X )max

t∈X
|K (x, t) | ∥ f ∥L2ν(X )

≤
√
ν (X )CK∥ f ∥L2ν(X ).

with CK = maxx,t∈X |K (x, t) | < +∞. Therefore:

∥ LK f ∥L2ν(X ) =

(∫
(LK f ) (t)

2 dν (t)

) 1
2

≤ ν (X )CK∥ f ∥L2ν(X ). □
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Proof (3/6)

Criterion for compactness

In order to prove the compactness of LK we need the following criterion.
Let C (X ) denote the set of continuous functions on X endowed with
infinite norm ∥ f ∥∞ = maxx∈X | f (x) |.
A set of functions G ⊂ C (X ) is called equicontinuous if:

∀ϵ > 0, ∃δ > 0,∀ (x, y) ∈ X 2,

∥ x− y ∥ < δ =⇒ ∀g ∈ G , | g (x)− g (y) | < ϵ.

Ascoli Theorem

A part H ⊂ C (X ) is relatively compact (i.e., its closure is compact) if
and only if it is uniformly bounded and equicontinuous.
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Proof (4/6)

LK is compact

Let (fn)n≥0 be a bounded sequence of L2ν (X ) (∥ fn ∥L2ν(X ) < M for all n).
The sequence (LK fn)n≥0 is a sequence of continuous functions, uniformly
bounded because:

∥ LK fn ∥∞ ≤
√
ν (X )CK∥ fn ∥L2ν(X ) ≤

√
ν (X )CKM .

It is equicontinuous because:

| LK fn (x1)− LK fn (x2) | ≤
√
ν (X )max

t∈X
|K (x1, t)− K (x2, t) |M .

By Ascoli theorem, we can extract a sequence uniformly convergent in
C (X ), and therefore in L2ν (X ). □
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Proof (5/6)

LK is self-adjoint

K being symmetric, we have for all f , g ∈ L2ν (X ):

⟨f , Lg⟩L2ν(X ) =

∫
f (x) (Lg) (x) dν (x)

=

∫ ∫
f (x) g (t)K (x, t) dν (x) dν (t) (Fubini)

= ⟨Lf , g⟩L2ν(X ) .
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Proof (6/6)

LK is positive

We can approximate the integral by finite sums:

⟨f , Lf ⟩L2ν(X ) =

∫ ∫
f (x) f (t)K (x, t) ν (dx) ν (dt)

= lim
k→∞

ν (X )
k2

k∑

i ,j=1

K (xi , xj) f (xi ) f (xj)

≥ 0 ,

because K is positive definite. □
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Main result

Mercer’s Theorem

Let X be a compact metric space, ν a nondegeneratea Borel measure on
X , and K a continuous p.d. kernel. Let λ1 ≥ λ2 ≥ . . . ≥ 0 denote the
nonnegative eigenvalues of LK and (ψ1, ψ2, . . .) the corresponding
eigenfunctions. Then all functions ψk are continuous, and for any
x, t ∈ X :

K (x, t) =
∞∑

k=1

λkψk (x)ψk (t) ,

where the convergence is absolute for each x, t ∈ X , and uniform on
X × X .

ai.e., ν(U) > 0 for any nonempty open set U ⊂ X
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Proof of Mercer’s Theorem (1/6)

For any k ≥ 1 such that λk > 0, ψk ∈ H (RKHS of K )

If λk > 0, we have

∀x ∈ X , ψk(x) =
1

λk
LKψk(x)

=
1

λk

∫
K (x, t)ψk(t)dν(t)

= lim
n→+∞

ν(X )
λkn

n∑

i=1

K (x, ti )ψk(ti )

︸ ︷︷ ︸
hn(x)

for a set t1, t2, . . . conveniently chosen. Besides, hn ∈ H for any n ∈ N
and, for any n,m ∈ N,

⟨hn, hm⟩H =
ν(X )2
λ2knm

n∑

i=1

m∑

j=1

ψk(ti )ψk(tj)K (ti , tj) .
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Proof of Mercer’s Theorem (2/6)

For any k ≥ 1 such that λk > 0, ψk ∈ H (cont.)

Therefore,

lim
n,m→+∞

⟨hn, hm⟩H =
1

λ2k

∫ ∫
K (t, t′)ψk(t)ψk(t

′)dν(t)dν(t′) := R ,

and

∥ hn−hm ∥2H = ⟨hn, hn⟩H+⟨hm, hm⟩H−2 ⟨hn, hm⟩H
n,m→∞−−−−−→ R+R−2R = 0 .

(hn)n∈N is therefore a Cauchy sequence in H, which converges to a
function h ∈ H. In particular, for any x ∈ X ,

h(x) = lim
n→+∞

hn(x) = ψk(x) ,

and finally ψk = h =⇒ ψk ∈ H. □
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Proof of Mercer’s Theorem (3/6)

{√
λkψk : λk > 0

}
in an orthonormal system (ONS) of H

Let i , j ≥ 1 such that λi , λj > 0. Then
√
λiψi ,

√
λjψj ∈ H and

〈√
λiψi ,

√
λjψj

〉
H
=

〈
1√
λi

∫
Ktψi (t)dν(t), ψi ,

√
λjψj

〉

H

=

√
λj
λi

∫
⟨Kt, ψj⟩H ψi (t)dν(t)

=

√
λj
λi

∫
ψj(t)ψi (t)dν(t)

=

√
λj
λi
⟨ψi , ψj⟩L2ν(X )

= δi ,j . □
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Proof of Mercer’s Theorem (4/6)

For any x ∈ X ,∑k:λk>0 λkψk(x)2 ≤ CK

For any x ∈ X , Kx ∈ H and ∥Kx∥2H = K (x, x) ≤ CK .
Therefore, since

{√
λkψk : λk > 0

}
is an ONS of H:

CK ≥ ∥Kx∥2H
≥
∑

k:λk>0

〈
Kx,
√
λkψk

〉2
H

=
∑

k:λk>0

λkψk(x)
2 . □
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Proof of Mercer’s Theorem (5/6)

For any x ∈ X , t→∑
i λiψi(x)ψi(t) convergences uniformly to a

continuous function gx

For any fixed x ∈ X , we therefore have, for any t ∈ X (restricting the
sum to the indices i ≥ 1 such that λi > 0):

m+ℓ∑

i=m

λiψi (x)ψi (t) ≤
(

m+ℓ∑

i=m

λiψi (x)
2

) 1
2
(

m+ℓ∑

i=m

λiψi (t)
2

) 1
2

≤ CK

(
m+ℓ∑

i=m

λiψi (x)
2

) 1
2

,

which tends to 0 uniformly in t ∈ X . Therefore the series of functions
t→∑

i λiψi (x)ψi (t) is uniformly Cauchy, continuous, and therefore
convergences uniformly to a continuous function gx.
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Proof of Mercer’s Theorem (6/6)

Kx = gx in L2(ν)

On the other hand, we can expand Kx over the ONB {ψk , k ≥ 1} of
L2ν (X ):

Kx =
∑

k≥1

⟨Kx, ψk⟩L2ν(X ) ψk

=
∑

k≥1

(Lψk)(x)ψk

=
∑

k≥1

λkψk(x)ψk

=
∑

k≥1 :λk>0

λkψk(x)ψk ,

therefore Kx = gx in L2(ν), i.e., ∥Kx − gx∥L2(ν) = 0.
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Proof of Mercer’s Theorem (5/5)

Conclusion

Since ν in nondegenerate, and both Kx and gx are continuous, this
implies

∀t ∈ X , Kx(t) = gx(t) =
∑

i

λiψi (x)ψi (t) ,

and the convergence is uniform in X × X because K is continuous.
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Isomorphism betwwen H and L2ν (X )
We saw that

L
1
2
K :L2ν (X )→ H

∞∑

i=1

aiψi 7→
∞∑

i=1

ai
√
λiψi

is an isomorphism betwwen H and L2ν (X ), i.e.,

∀f ∈ L2ν (X ) , ∥ f ∥L2ν(X ) = ∥ L
1
2
K f ∥H ,

and conversely,

∀f ∈ H , ∥ f ∥H = ∥ L−
1
2

K f ∥L2ν(X ) .

This can be useful to compute L2ν (X ) norms using RKHS theory,
e.g., to study the performance of kernel ridge regression (KRR)
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Remember KRR

Given (x1, . . . , xn) ∈ X n and (y1, . . . , yn) ∈ Rn, KRR solves for any
λ > 0:

f̂λ = argmin
f ∈H

1

n

n∑

i=1

(yi − f (xi ))
2 + λ∥ f ∥2H .

The solution is

f̂λ(x) =
n∑

i=1

αiK (xi , x) , where α = (K+ λnI)−1 y .
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Model

Let K be a Mercer kernel over the compact set X and
nondegenerate probability measure ν (i.e., ν(X ) = 1). Let
λ1 ≥ λ2 ≥ ... ≥ 0 be the eigenvalues of LK , {ψi , i ≥ 1} the
eigenvectors, and

{
φi =

√
λiψi , i ≥ 1

}
an ONB of H.

Let (X ,Y ) be random variables with distribution P, such that

X ∈ X has distribution ν

and

Y = f ∗(X ) + ϵ where f ∗ ∈ H and ϵ ∼ N (0, σ2) .

We assume (xi , yi )i=1,...,n are i.i.d. realizations of (X ,Y ).

We want to estimate the performance of KRR in terms of mean
squared error:

MSE (f̂λ) = E(Y − f̂λ(X ))2 .
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Decomposition of the MSE

Lemma

Let β∗ ∈ ℓ2 such that f ∗ =
∑

i≥1 β
∗
i φi , let ΦN the n ×∞ matrix given

by Φn = (φj(xi ))1≤i≤n;1≤j<+∞ . and T : ℓ2 → ℓ2 be the diagonal
operator T (a1, a2, . . .) = (λ1a1, λ2a2, . . .) .
Then it holds

MSE (f̂λ)−MSE (f ∗) = Bλ + Vλ ,

where

Bλ = E∥ T 1
2

(
I−
(
Φ⊤
n Φn + λnI

)−1
Φ⊤
n Φn

)
β∗ ∥2ℓ2 ,

Vλ = E∥ T 1
2

(
Φ⊤
n Φn + λnI

)−1
Φ⊤
n ε ∥2ℓ2 .

This corresponds to a classical decomposition of excess MSE as ”bias +
variance”. Note that Bλ increases with λ, but Vλ decreases with λ.
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Decomposition of the MSE: Proof (1/5)

Since ϵ is independent of X and f̂λ, and Eϵ = 0 we have

MSE (f̂λ) = E
(
f ∗(X )− f̂λ(X ) + ϵ

)2

= E
(
f ∗(X )− f̂λ(X )

)2
+ Eϵ2

= E∥ f ∗ − f̂λ ∥2L2ν(X ) +MSE (f ∗) .

Using the isometry between L2ν (X ) and H, we obtain

MSE (f̂λ)−MSE (f ∗) = E∥ L
1
2
K (f

∗ − f̂λ) ∥2H .
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Decomposition of the MSE: Proof (2/5)
{
φi =

√
λiψi

}
, i ≥ 1 is an ONB of H, we can define the linear

isomorphism:

e :H → ℓ2

f =
∑

i≥1

aiφi 7→ (a1, a2 . . .)
⊤

In other words,
e(f )i = ⟨f , φi ⟩H .

In particular, for any x ∈ X ,

e(Kx) = (φ1(x), φ2(x), . . .)
τ .

In that base LK is a diagonal operator T = diag(λ1, λ2, . . .), i.e.,

∀f =
∑

i≥1

aiφi ∈ H , e(LK f ) = T e(f ) = (λ1a1, λ2a2, . . .)
⊤ .
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Decomposition of the MSE: Proof (3/5)

Let Φn = (e(Kx1), . . . , e(Kxn))
⊤, i.e.,

Φn = (φj(xi ))1≤i≤n;1≤j<+∞ .

Then f̂λ =
∑n

i=1 αiKxi translates to

e(f̂λ) =
n∑

i=1

αie (Kxi ) = Φ⊤
n α .

Notice that

[ΦnΦ
⊤
n ]ij =

〈
e(Kxi ), e(Kxj )

〉
ℓ2
=
〈
Kxi ,Kxj

〉
H = K (xi , xj) ,

so ΦnΦ
⊤
n = K and α = (K+ λnI)−1 y translates to

α =
(
ΦnΦ

⊤
n + λnI

)−1
y .

Putting it all together, and using the matrix inversion lemma:

e(f̂λ) = Φ⊤
n

(
ΦnΦ

⊤
n + λnI

)−1
y =

(
Φ⊤
n Φn + λnI

)−1
Φ⊤
n y .
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Decomposition of the MSE: Proof (4/5)

Let β∗ = (β∗1 , β
∗
2 , . . .)

⊤ = e(f ∗), i.e.,

f ∗ =
∑

i≥1

β∗i φi .

In particular, for any x ∈ X ,

f ∗(x) = ⟨f ∗,Kx⟩H = ⟨β∗, e(Kx)⟩ℓ2 .

Then yi = f ∗(xi ) + ϵi for i = 1, . . . , n translates to

y = Φnβ
∗ + ε ,

where ε = (ϵ1, . . . , ϵn)
⊤.
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Decomposition of the MSE: Proof (5/5)

This gives

e(f ∗ − f̂λ) = β∗ −
(
Φ⊤
n Φn + λnI

)−1
Φ⊤
n (Φnβ

∗ + ε)

=

(
I−
(
Φ⊤
n Φn + λnI

)−1
Φ⊤
n Φn

)
β∗ −

(
Φ⊤
n Φn + λnI

)−1
Φ⊤
n ε ,

and therefore, since ε is independent of Φn:

E∥ L
1
2
K (f

∗ − f̂λ) ∥2H = E∥ e
(
L

1
2
K (f

∗ − f̂λ)

)
∥2ℓ2

= E∥ T 1
2 e
(
f ∗ − f̂λ)

)
∥2ℓ2

= E∥ T 1
2

(
I−
(
Φ⊤
n Φn + λnI

)−1
Φ⊤
n Φn

)
β∗ ∥2ℓ2

+ E∥ T 1
2

(
Φ⊤
n Φn + λnI

)−1
Φ⊤
n ε ∥2ℓ2 . □

323 / 785



Simplification

Bλ and Vλ depend on the data through ΦnΦ
⊤
n , which is a random

operator ℓ2 → ℓ2.

For ”large n”, we note that, for any i , j ≥ 1:

[
ΦnΦ

⊤
n

]
ij
=

n∑

k=1

φi (xk)φj(xk) ≈ n ⟨φi , φj⟩L2ν(X ) = n
√
µiµjδij ,

so
ΦnΦ

⊤
n ≈ nT .

We now study Bλ and Vλ under the approximation ”ΦnΦ
⊤
n = nT ”

(and call B̃λ and Ṽλ the corresponding approximations).

The difference between Bλ and B̃λ (resp. Vλ and Ṽλ) can be
studied rigorously but will not change much the main results we will
get; see, e.g., Dicker et al. (2015) for details.
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Upper bounds on the bias and variance

Theorem

For any J ≥ 1,

B̃λ ≤
(
λ2

λJ
+ λJ+1

)
∥ f ∗ ∥2H ,

and

Ṽλ ≤
σ2

n

[
J +

∑+∞
i=J+1 λi

4λ

]
.

The integer J (and λ) will be optimized later, depending on the
assumptions we make on f ∗ and on the decrease of λi .
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Proof: bias (1/2)

Using T = diag(λi ; i ≥ 1) and ΦnΦ
⊤
n = nT , we get

T 1
2

(
I−
(
Φ⊤
n Φn + λnI

)−1
Φ⊤
n Φn

)
= diag

(
λ
√
λi

λ+ λi
; i ≥ 1

)
,

and therefore, for any J ≥ 1:

B̃λ =
J∑

i=1

λ2λi
(λ+ λi )2

(β∗i )
2 +

∞∑

i≥J+1

λ2λi
(λ+ λi )2

(β∗i )
2 .

For the first term, we use the fact that
λ2
i

(λ+λi )2
≤ 1, and that

λi ≥ λJ for i ≤ J, to get

J∑

i=1

λ2λi
(λ+ λi )2

(β∗i )
2 =

J∑

i=1

λ2

λi

λ2i
(λ+ λi )2

(β∗i )
2

≤ λ2

λJ

J∑

i=1

(β∗i )
2 ≤ λ2

λJ
∥β∗ ∥2ℓ2 .
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Proof: bias (2/2)

For the second term, we use the fact that λ2

(λ+λi )2
≤ 1, and that

λi ≤ λJ+1 for i ≥ J + 1, to get

∞∑

i≥J+1

λ2λi
(λ+ λi )2

(β∗i )
2 ≤ λJ+1

∞∑

i≥J+1

(β∗i )
2 ≤ λJ+1∥β∗ ∥2ℓ2 .

Noting that ∥β∗ ∥ℓ2 = ∥ f ∗ ∥H, we finally get

B̃λ ≤
(
λ2

λJ
+ λJ+1

)
∥ f ∗ ∥2H . □
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Proof: variance (1/2)

Using T = diag(λi ; i ≥ 1), ΦnΦ
⊤
n = nT and Eεε⊤ = σ2I, we get

Ṽλ = E∥ T 1
2

(
Φ⊤
n Φn + λnI

)−1
Φ⊤
n ε ∥2ℓ2

=
1

n2
E∥ T 1

2 (T + λI)−1Φ⊤
n ε ∥2ℓ2

=
1

n2
ETrace

[
T 1

2 (T + λI)−1Φ⊤
n εε

⊤Φn (T + λI)−1 T 1
2

]

=
1

n2
Trace

[
T 1

2 (T + λI)−1Φ⊤
n E
(
εε⊤

)
Φn (T + λI)−1 T 1

2

]

=
σ2

n
Trace

[
T 1

2 (T + λI)−1 T (T + λI)−1 T 1
2

]

=
σ2

n

[
J∑

i=1

λ2i
(λi + λ)2

+
+∞∑

i=J+1

λ2i
(λi + λ)2

]
.
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Proof: variance (2/2)

For the first term, we just use
λ2
i

(λi+λ)2
≤ 1 to get

J∑

i=1

λ2i
(λi + λ)2

≤ J .

For the second term, we use the fact that t → t
(t+λ)2

reaches its

maximum at t = λ equal to 1
4λ , therefore

+∞∑

i=J+1

λ2i
(λi + λ)2

≤
∑+∞

i=J+1 λi

4λ
.

Combining both terms finally gives

Ṽλ ≤
σ2

n

[
J +

∑+∞
i=J+1 λi

4λ

]
. □
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Corollary: rates of convergence of KRR

Polynomial-decay kernels. Suppose there are constants C > 0 and
s > 1 such that 0 < λi ≤ Ci−s for i = 1, 2, . . .. Let λ = n−

s
s+1 .

Then
B̃λ + Ṽλ ≤ O

{(
∥ f ∗ ∥2H + σ2

)
n−

s
s+1

}
.

Exponential-decay kernels. Suppose there are constants C > 0
and α > 0 such that 0 < λi ≤ Ce−αi for i = 1, 2, . . .. Let
λ = n−1 log(n). Then

B̃λ + Ṽλ ≤ O

{(
∥ f ∗ ∥2H + σ2

) log(n)
n

}
.

Finite rank kernels. Suppose there is J ≥ 1 such that
λJ = λJ+1 = . . . = 0. Let λ = n−1. Then

B̃λ + Ṽλ ≤ O

{(
∥ f ∗ ∥2H + σ2

) J
n

}
.
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Remarks

The same result holds for Bλ + Vλ, see Dicker et al. (2015, corollary
1-4). We follow and adapt their proof.

The constants in the ”big-O” notation only depend on the kernel K
and the measure dν(x).

The rates are minimax optimal (Caponnetto and De Vito, 2007).

In particular, for polynomial-decay kernels, BH(r) ⊂ L2ν (X ) is a
Sobolev space of q − 1 times absolutely continuous and
differentiable functions f with ∥ f q ∥L2ν(X ) < +∞, for s = 2q. We
recover the standard optimal convergence rate of nonparametric

regression n−
2q

2q+1 (Tsybakov, 2004).

If we make additional assumptions on f ∗, e.g., not only
∑

i≥1(β
∗
i )

2

but also
∑

i≥1 i
τ (β∗i )

2 for τ > 0, or β∗i = 0 for i > J, then we can
get faster convergence rate, which are also minimax optimal for the
class of functions considered. We say that KRR is adaptive
(Caponnetto and De Vito, 2007; Dicker et al., 2015).
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Proof for polynomial-decay kernels (1/3)

Let J such that λJ+1 ≤ λ ≤ λJ .
For the bias, we immediately get

λ2

λJ
≤ λ and λJ+1 ≤ λ ,

therefore
B̃λ ≤ 2λ∥ f ∗ ∥2H = 2n−

s
s+1 ∥ f ∗ ∥2H .

For the variance, we need to upper bound J and
∑

i≥J+1 λi .

λ ≤ λJ ≤ CJ−s , therefore

J ≤ C
1
s λ−

1
s = C

1
s n

1
s+1 .
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Proof for polynomial-decay kernels (2/3)

To upper bound the sum, let J0 = ⌊C
1
s n

1
s+1 ⌋+ 1. Then:

+∞∑

i=J+1

λi =

J0∑

i=J+1

λi +
+∞∑

i=J0+1

λi

≤ J0λ+ C

∫ +∞

J0

t−sdt

≤ J0n
− s

s+1 +
C

s − 1
J1−s
0 .

Since J0 ≤ C
1
s n

1
s+1 + 1 and 1 ≤ n

1
s+1 ,

J0n
− s

s+1 ≤
(
C

1
s + 1

)
n

1−s
s+1 .

Since J0 ≥ C
1
s n

1
s+1 ,

C

s − 1
J1−s
0 ≤ C

1
s n

1−s
s+1

s − 1
.
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Proof for polynomial-decay kernels (3/3)

Therefore the sum is upper bounded by

+∞∑

i=J+1

λi ≤
(

s

s − 1
C

1
s + 1

)
n

1−s
s+1 .

Finally,

Ṽλ =
σ2

n

[
J +

∑+∞
i=J+1 λi

4
n−

s
s+1

]

≤ σ2

n

[
C

1
s n

1
s+1 +

1

4

(
s

s − 1
C

1
s + 1

)
n

1−s
s+1 n−

s
s+1

]

≤ σ2
[
C

1
s

(
1 +

s

4(s − 1)

)
+

1

4

]
n

−s
s+1 . □
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Proof sketch for exponential-decay kernels

We proceed similarly.

From λ ≤ λJ we deduce J ≤ O(log(n)).

Using J0 = ⌊α−1 log(n)⌋+ 1 we deduce
∑

i≥J+1 λi ≤ 0
(
log(n)2

n

)
.

Details left as exercice; see Dicker et al. (2015, corollary 2). □
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Proof for finite-rank kernels

We use a simpler upper bound on B̃λ: using the fact that
t

(t+λ)2
≤ 1

4λ for any t, and λi = 0 for i > J:

B̃λ ≤
λ

4
∥ f ∗ ∥2H .

For the variance, our bound simplifies to

Ṽλ ≤
σ2J

n
.

Taking λ = n−1 and summing this inequalities gives the result. □
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Motivation

Kernel methods are sometimes criticized for their lack of flexibility: a
large effort is spent in designing by hand the kernel.

Question

How do we design a kernel adapted to the data?

Answer

A successful strategy is given by kernels for generative models, which
are/have been the state of the art in many fields, including
representation of image and sequence data representation.

Parametric model

A model is a family of distributions

{Pθ, θ ∈ Θ ⊂ Rm} ⊆ M+
1 (X ) .
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Fisher kernel

Definition

Fix a parameter θ0 ∈ Θ (obtained for instance by maximum
likelihood over a training set).

For each sequence x, compute the Fisher score vector:

Φθ0(x) = ∇θ logPθ(x)|θ=θ0 ,

which can be interpreted as the local contribution of each parameter.

Form the kernel (Jaakkola et al., 2000):

K
(
x, x′

)
= Φθ0(x)

⊤I(θ0)
−1Φθ0(x

′) ,

where I(θ0) = E
[
Φθ0(x)Φθ0(x)

⊤] is the Fisher information matrix.

Note: when θ0 is the ML estimator, E[Φθ0(x)] = 0 and I(θ0) is a
covariance matrix.
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Fisher kernel properties (1/2)

The Fisher score describes how each parameter contributes to the
process of generating a particular example

A kernel classifier employing the Fisher kernel derived from a model
that contains the label as a latent variable is, asymptotically, at least
as good as the MAP labelling based on the model (Jaakkola and
Haussler, 1999).

A variant of the Fisher kernel (called the Tangent of Posterior
kernel) can also improve over the direct posterior classification by
helping to correct the effect of estimation errors in the parameter
(Tsuda et al., 2002).
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Fisher kernel properties (2/2)

Lemma

The Fisher kernel is invariant under change of parametrization.

Consider indeed a different parametrization given by some
diffeomorphism λ = f (θ). The Jacobian matrix relating the

parametrization is denoted by [J]ij =
∂θj
∂λi

.

The gradient of log-likelihood w.r.t. to the new parameters is

Φλ0(x) = ∇λ logPλ0(x) = J∇θ logPθ0(x) = JΦθ0(x).

The Fisher information matrix is

I(λ0) = E
[
Φλ0(x)Φλ0(x)

⊤
]
= JI(θ0)J

⊤.

We conclude by noticing that I(λ0)−1 = J−1I(θ0)−1J⊤−1:

K
(
x, x′

)
= Φθ0(x)

⊤I(θ0)
−1Φθ0(x

′) = Φλ0(x)
⊤I(λ0)

−1Φλ0(x
′).
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Fisher kernel in practice

Φθ0(x) can be computed explicitly for many models (e.g., HMMs),
where the model is first estimated from data.

I(θ0) is often replaced by the identity matrix for simplicity.

Several different models (i.e., different θ0) can be trained and
combined.

The Fisher vectors are defined as φθ0(x) = I(θ0)−1/2Φθ0(x). They
are explicitly computed and correspond to an explicit embedding:
K (x, x′) = φθ0(x)

⊤φθ0(x
′).
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Fisher kernels: example with Gaussian data model (1/2)

Consider a normal distribution N (µ, σ2) and denote by α = 1/σ2 the
inverse variance, i.e., precision parameter. With θ = (µ, α), we have

logPθ(x) =
1

2
logα− 1

2
log(2π)− 1

2
α(x − µ)2,

and thus

∂ logPθ(x)

∂µ
= α(x − µ), ∂ logPθ(x)

∂α
=

1

2

[
1

α
− (x − µ)2

]
,

and (exercise)

I(θ) =

(
α 0
0 (1/2)α−2

)
.

The Fisher vector is then

φθ(x) =

(
(x − µ)/σ

(1/
√
2)(1− (x − µ)2/σ2)

)
.
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Fisher kernels: example with Gaussian data model (2/2)

Now consider an i.i.d. data model over a set of data points x1, . . . , xn all
distributed according to N (µ, σ2):

Pθ(x1, . . . , xn) =
n∏

i=1

Pθ(xi ).

Then, the Fisher vector is given by the sum of Fisher vectors of the
points.

Encodes the discrepancy in the first and second order moment of
the data w.r.t. those of the model.

φ(x1, . . . , xn) =
n∑

i=1

φ(xi ) = n

(
(µ̂− µ)/σ

(σ2 − σ̂2)/(
√
2σ2)

)
,

where

µ̂ =
1

n

n∑

i=1

xi and σ̂ =
1

n

n∑

i=1

(xi − µ̂)2.
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Application: Aggregation of visual words (1/5)

Patch extraction and description stage:
In various contexts, images may be described as a set of
patches x1, . . . , xn computed at interest points. For example, SIFT,
HOG, LBP, color histograms, convolutional features...

Coding stage: The set of patches is then encoded into a single
representation φ(xi ), typically in a high-dimensional space.

Pooling stage: For example, sum pooling

φ(x1, . . . , xn) =
n∑

i=1

φ(xi ).

Fisher vectors with a Gaussian Mixture Model (GMM) is a simple
and effective aggregation technique (Perronnin and Dance, 2007).
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Application: Aggregation of visual words (2/5)

Let θ = (πj ,µj ,Σj)j=1 ...,k be the parameters of a GMM with k Gaussian
components. Then, the probabilistic model is given by

Pθ(x) =
k∑

j=1

πjN (x;µj ,Σj).

Remarks

Each mixture component corresponds to a visual word, with a mean,
variance, and mixing weight.

Diagonal covariances Σj = diag (σj1, . . . , σjp) = diag (σj) are often
used for simplicity.

This is a richer model than the traditional “bag of words” approach.

The probabilistic model is learned offline beforehand.
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Application: Aggregation of visual words (3/5)

After cumbersome calculations (exercise), we obtain φθ(x1, . . . , xn) =

[φπ1(X), . . . , φπp(X), φµ1
(X)⊤, . . . , φµp

(X)⊤, φσ1(X)
⊤, . . . , φσp(X)

⊤]⊤,

with

φµj
(X) =

1

n
√
πj

n∑

i=1

γij(xi − µj)/σj

φσj (X) =
1

n
√
2πj

n∑

i=1

γij
[
(xi − µj)

2/σ2
j − 1

]
,

where, with an abuse of notation, the division between two vectors is
meant elementwise and the scalars γij can be interpreted as the
soft-assignment of word i to component j :

γij =
πjN (xi ;µj ,σj)∑k
l=1 πlN (xi ;µl ,σl)

.
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Application: Aggregation of visual words (4/5)

Finally, we also have the following interpretation of encoding first and
second-order statistics:

φµj
(X) =

γj√
πj
(µ̂j − µj)/σj

φσj (X) =
γj√
2πj

(σ̂2
j − σ2

j )/σ
2
j ,

with

γj =
n∑

i=1

γij and µ̂j =
1

γj

n∑

i=1

γijxi and σ̂j =
1

γj

n∑

i=1

γij(xi −µj)
2.

The component φπ(X) is often dropped due to its negligible contribution
in practice, and the resulting representation is of dimension 2kp where p
is the dimension of the xi ’s.
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Application: Aggregation of visual words (5/5)

FVs were state-of-the-art image representations before the revival of
convolutional neural networks in 2012.

This is an unsupervised image representation of high dimension.
They remain competitive among unsupervised methods, see the
following table from Bojanowski and Joulin, 2017.
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Relation to classification with generative models (1/3)

Assume that we have a generative probabilistic model Pθ to model
random variables (X ,Y ) where Y is a label in {1, . . . , p}.
Assume that the marginals Pθ(Y = k) = πk are among the model
parameters θ, which we can also parametrize as

Pθ(Y = k) = πk =
eαk

∑p
k ′=1 e

αk′
.

The classification of a new point x can be obtained via Bayes’ rule:

ŷ(x) = argmax
k=1,...,p

Pθ(Y = k |x),

where Pθ(Y = k |x) is short for Pθ(Y = k |X = x) and

Pθ(Y = k|x) = Pθ(x |Y = k)Pθ(Y = k)/Pθ(x)

= Pθ(x |Y = k)πk/

p∑

k ′=1

Pθ(x |Y = k ′)πk ′
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Relation to classification with generative models (2/3)

Then, consider the Fisher score

∇θ logPθ(x) =
1

Pθ(x)
∇θPθ(x)

=
1

Pθ(x)
∇θ

p∑

k=1

Pθ(x ,Y = k)

=
1

Pθ(x)

p∑

k=1

Pθ(x ,Y = k)∇θ logPθ(x ,Y = k)

=

p∑

k=1

Pθ(Y = k |x)[∇θ log πk +∇θ logPθ(x |Y = k)].

In particular (exercise)

∂ logPθ(x)

∂αk
= Pθ(Y = k |x)− πk .
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Relation to classification with generative models (3/3)

The first p elements in the Fisher score are given by class posteriors
minus a constant

φθ(x) = [Pθ(Y = 1|x)− π1, . . . ,Pθ(Y = p|x)− πp, ...].

Consider a multi-class linear classifier on φθ(x) such that for class k

The weights are zero except one for the k-th position;

The intercept bk be πk ;

Then,

ŷ(x) = argmax
k=1,...,p

φθ(x)
⊤wk + bk

ŷ(x) = argmax
k=1,...,p

Pθ(Y = k|x).

Bayes’ rule is implemented via this simple classifier using Fisher kernel.
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Mutual information kernels

Definition

Chose a prior w(dθ) on the measurable set Θ.

Form the kernel (Seeger, 2002):

K
(
x, x′

)
=

∫

θ∈Θ
Pθ(x)Pθ(x

′)w(dθ) .

No explicit computation of a finite-dimensional feature vector.

K (x, x′) =< φ (x) , φ (x′) >L2(w) with

φ (x) = (Pθ (x))θ∈Θ .
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Example: coin toss

Let Pθ(X = 1) = θ and Pθ(X = 0) = 1− θ a model for random coin
toss, with θ ∈ [0, 1].

Let dθ be the Lebesgue measure on [0, 1]

The mutual information kernel between x = 001 and x′ = 1010 is:
{
Pθ (x) = θ (1− θ)2 ,
Pθ (x

′) = θ2 (1− θ)2 ,

K
(
x, x′

)
=

∫ 1

0
θ3 (1− θ)4 dθ = 3!4!

8!
=

1

280
.
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Marginalized kernels

Definition

For any observed data x ∈ X , let a latent variable y ∈ Y be
associated probabilistically through a conditional probability Px (dy).

Let KZ be a kernel for the complete data z = (x, y)

Then, the following kernel is a valid kernel on X , called a
marginalized kernel (Tsuda et al., 2002):

KX
(
x, x′

)
:= EPx(dy)×Px′ (dy

′)KZ
(
z, z′

)

=

∫ ∫
KZ
(
(x, y) ,

(
x′, y′

))
Px (dy)Px′

(
dy′
)
.
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Marginalized kernels: proof of positive definiteness

KZ is p.d. on Z. Therefore, there exists a Hilbert space H and
ΦZ : Z → H such that:

KZ
(
z, z′

)
=
〈
ΦZ (z) ,ΦZ

(
z′
)〉

H .

Marginalizing therefore gives:

KX
(
x, x′

)
= EPx(dy)×Px′ (dy

′)KZ
(
z, z′

)

= EPx(dy)×Px′ (dy
′)

〈
ΦZ (z) ,ΦZ

(
z′
)〉

H

=
〈
EPx(dy)ΦZ (z) ,EPx′ (dy

′)ΦZ
(
z′
)〉

H ,

therefore KX is p.d. on X . □

Of course, we make the right assumptions such that each operation
above is valid, and all quantities are well defined.
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Short history of genomics

1866 : Laws of heredity (Mendel)
1909 : Morgan and the drosophilists
1944 : DNA supports heredity (Avery)
1953 : Structure of DNA (Crick, Watson,
Wilkins and Franklin)
1966 : Genetic code (Nirenberg)
1960-70 : Genetic engineering
1977 : Method for sequencing (Sanger)
1982 : Creation of Genbank
1990 : Human genome project launched
2003 : Human genome project completed
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A cell
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Chromosomes
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Chromosomes and DNA
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Structure of DNA

“We wish to suggest a
structure for the salt of
desoxyribose nucleic acid
(D.N.A.). This structure have
novel features which are of
considerable biological
interest” (Watson and Crick,
1953).

James Watson, Francis Crick, and Maurice Wilkins received the Nobel
prize for this discovery in 1962. Key to this discovery were the X-ray

crystallography images obtained by Rosalind Franklin.
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Structure of DNA
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The double helix
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Central dogma
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Proteins
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Genetic code
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Human genome project

Goal : sequence the 3,000,000,000 bases of the human genome

Consortium with 20 labs, 6 countries

Cost : between 0.5 and 1 billion USD
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2003: End of genomics era

Findings

About 25,000 genes only (representing 1.2% of the genome).

Automatic gene finding with graphical models.

97% of the genome is considered “junk DNA”.

Superposition of a variety of signals (many to be discovered).

373 / 785



Cost of human genome sequencing

374 / 785



Protein sequence

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Methionine

E : Glutamic acid K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine

H : Histidine Y : Tyrosine W : Tryptophane

I : Isoleucine S : Serine Q : Glutamine

D : Aspartic acid G : Glycine
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Challenges with protein sequences

A protein sequences can be seen as a variable-length sequence over
the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

These sequences are produced at a fast rate (result of the
sequencing programs)

Need for algorithms to compare, classify, analyze these sequences

Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...
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Example: supervised sequence classification

Data (training)

Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...

MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...

MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...

...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...

MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...

MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..

...

Goal

Build a classifier to predict whether new proteins are secreted or not.
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Supervised classification with vector embedding

The idea

Map each string x ∈ X to a vector Φ(x) ∈ F .
Train a classifier for vectors on the images Φ(x1), . . . ,Φ(xn) of the
training set (nearest neighbor, linear perceptron, logistic regression,
support vector machine...)

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...
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Kernels for protein sequences

Kernel methods have been widely investigated since Jaakkola et al.’s
seminal paper (1998).

What is a good kernel?

it should be mathematically valid (symmetric, p.d. or c.p.d.)
fast to compute
adapted to the problem (gives good performances)
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Kernel engineering for protein sequences

Define a (possibly high-dimensional) feature space of interest

Physico-chemical kernels
Spectrum, mismatch, substring kernels
Pairwise, motif kernels

Derive a kernel from a generative model

Fisher kernel
Mutual information kernel
Marginalized kernel

Derive a kernel from a similarity measure

Local alignment kernel
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Outline

5 The Kernel Jungle
Green, Mercer, Herglotz, Bochner and friends
Kernels for probabilistic models
Kernels for biological sequences

Motivations and history of genomics
Kernels derived from large feature spaces
Kernels derived from generative models
Kernels derived from a similarity measure
Application to remote homology detection

Kernels for graphs
Kernels on graphs
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Vector embedding for strings

The idea

Represent each sequence x by a fixed-length numerical vector
Φ (x) ∈ Rn. How to perform this embedding?

Physico-chemical kernel

Extract relevant features, such as:

length of the sequence

time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

Fourier transforms (Wang et al., 2004)
Autocorrelation functions (Zhang et al., 2003)

rj =
1

n − j

n−j∑

i=1

hihi+j
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Substring indexation

The approach

Alternatively, index the feature space by fixed-length strings, i.e.,

Φ (x) = (Φu (x))u∈Ak

where Φu (x) can be:

the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)

the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)

the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Example: Spectrum kernel (1/4)

Kernel definition

The 3-spectrum of

x = CGGSLIAMMWFGV

is:

(CGG,GGS,GSL,SLI,LIA,IAM,AMM,MMW,MWF,WFG,FGV) .

Let Φu (x) denote the number of occurrences of u in x. The
k-spectrum kernel is:

K
(
x, x′

)
:=

∑

u∈Ak

Φu (x) Φu

(
x′
)
.
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Example: Spectrum kernel (2/4)

Implementation

The computation of the kernel is formally a sum over |A|k terms,
but at most | x | − k + 1 terms are non-zero in Φ (x) =⇒
Computation in O (| x |+ | x′ |) with pre-indexation of the strings.

Fast classification of a sequence x in O (| x |):

f (x) = w · Φ (x) =
∑

u

wuΦu (x) =

| x |−k+1∑

i=1

wxi ...xi+k−1
.

Remarks

Work with any string (natural language, time series...)

Fast and scalable, a good default method for string classification.

Variants allow matching of k-mers up to m mismatches.
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Example: Spectrum kernel (3/4)

If pre-indexation is not possible: retrieval tree (trie)

Consider the sequence ACGTTTAACGTAC.

A C G T

AA AC CG GT TA TT

AAC ACG CGT GTA GTT TAA TAC TTA TTT

The complexity for computing K (x, x′) becomes O(k(|x|+ |x′|)).
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Example: Spectrum kernel (4/4)

If pre-indexation is not possible: use a suffix tree

The complexity for computing K (x, x′) becomes O(|x|+ |x′|), but with a
larger constant than with pre-indexation.
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Example 2: Substring kernel (1/12)

Definition

For 1 ≤ k ≤ n ∈ N, we denote by I(k , n) the set of sequences of
indices i = (i1, . . . , ik), with 1 ≤ i1 < i2 < . . . < ik ≤ n.

For a string x = x1 . . . xn ∈ X of length n, for a sequence of indices
i ∈ I(k , n), we define a substring as:

x (i) := xi1xi2 . . . xik .

The length of the substring is:

l (i) = ik − i1 + 1.
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Example 2: Substring kernel (2/12)

Example

ABRACADABRA

i = (3, 4, 7, 8, 10)

x (i) =RADAR

l (i) = 10− 3 + 1 = 8
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Example 2: Substring kernel (3/12)

The kernel

Let k ∈ N and λ ∈ R+ fixed. For all u ∈ Ak , let Φu : X → R be
defined by:

∀x ∈ X , Φu (x) =
∑

i∈I(k,| x |): x(i)=u

λl(i) .

The substring kernel is the p.d. kernel defined by:

∀
(
x, x′

)
∈ X 2, Kk,λ

(
x, x′

)
=
∑

u∈Ak

Φu (x) Φu

(
x′
)
.
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Example 2: Substring kernel (4/12)

Example

u ca ct at ba bt cr ar br

Φu(cat) λ2 λ3 λ2 0 0 0 0 0
Φu(car) λ2 0 0 0 0 λ3 λ2 0
Φu(bat) 0 0 λ2 λ2 λ3 0 0 0
Φu(bar) 0 0 0 λ2 0 0 λ2 λ3





K (cat,cat) = K (car,car) = 2λ4 + λ6

K (cat,car) = λ4

K (cat,bar) = 0
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Example 2: Substring kernel (5/12)

Kernel computation

We need to compute, for any pair x, x′ ∈ X , the kernel:

Kk,λ

(
x, x′

)
=
∑

u∈Ak

Φu (x) Φu

(
x′
)

=
∑

u∈Ak

∑

i:x(i)=u

∑

i′:x′(i′)=u

λl(i)+l(i′) .

Enumerating the substrings is too slow (of order | x |k).
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Example 2: Substring kernel (6/12)

Kernel computation (cont.)

For u ∈ Ak remember that:

Φu (x) =
∑

i:x(i)=u

λik−i1+1 .

Let now:
Ψu (x) =

∑

i:x(i)=u

λ| x |−i1+1 .
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Example 2: Substring kernel (7/12)

Kernel computation (cont.)

Let us note x[1,j] = x1 . . . xj . A simple rewriting shows that, if we note
a ∈ A the last letter of u (u = va):

Φva (x) =
∑

j∈[1,| x |]:xj=a

Ψv

(
x[1,j−1]

)
λ ,

and
Ψva (x) =

∑

j∈[1,| x |]:xj=a

Ψv

(
x[1,j−1]

)
λ| x |−j+1 .
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Example 2: Substring kernel (8/12)

Kernel computation (cont.)

Moreover we observe that if the string is of the form xa (i.e., the last
letter is a ∈ A), then:

If the last letter of u is not a:
{
Φu (xa) = Φu (x) ,

Ψu (xa) = λΨu (x) .

If the last letter of u is a (i.e., u = va with v ∈ Ak−1):

{
Φva (xa) = Φva (x) + λΨv (x) ,

Ψva (xa) = λΨva (x) + λΨv (x) .
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Example 2: Substring kernel (9/12)

Kernel computation (cont.)

Let us now show how the function:

Bk

(
x, x′

)
:=
∑

u∈Ak

Ψu (x)Ψu

(
x′
)

and the kernel:
Kk

(
x, x′

)
:=
∑

u∈Ak

Φu (x) Φu

(
x′
)

can be computed recursively. We note that:

{
B0 (x, x′) = K0 (x, x′) = 1 for all x, x′

Bk (x, x
′) = Kk (x, x

′) = 0 if min (| x | , | x′ |) < k
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Example 2: Substring kernel (10/12)

Recursive computation of Bk

Bk

(
xa, x′

)

=
∑

u∈Ak

Ψu (xa)Ψu

(
x′
)

= λ
∑

u∈Ak

Ψu (x)Ψu

(
x′
)
+ λ

∑

v∈Ak−1

Ψv (x)Ψva

(
x′
)

= λBk

(
x, x′

)
+

λ
∑

v∈Ak−1

Ψv (x)


 ∑

j∈[1,| x′ |]:x ′j=a

Ψv

(
x′[1,j−1]

)
λ| x

′ |−j+1




= λBk

(
x, x′

)
+

∑

j∈[1,| x′ |]:x ′j=a

Bk−1

(
x, x′[1,j−1]

)
λ| x

′ |−j+2
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Example 2: Substring kernel (11/12)

Recursive computation of Bk

Bk

(
xa, x′b

)

= λBk

(
x, x′b

)
+ λ

∑

j∈[1,| x′ |]:x ′j=a

Bk−1

(
x, x′[1,j−1]

)
λ| x

′ |−j+2

+ δa=bBk−1(x, x
′)λ2

= λBk

(
x, x′b

)
+ λ(Bk(xa, x

′)− λBk(x, x
′)) + δa=bBk−1(x, x

′)λ2

= λBk

(
x, x′b

)
+ λBk(xa, x

′)− λ2Bk(x, x
′) + δa=bBk−1(x, x

′)λ2.

The dynamic programming table can be filled in O(k|x||x′|) operations.
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Example 2: Substring kernel (12/12)

Recursive computation of Kk

Kk

(
xa, x′

)

=
∑

u∈Ak

Φu (xa) Φu

(
x′
)

=
∑

u∈Ak

Φu (x) Φu

(
x′
)
+ λ

∑

v∈Ak−1

Ψv (x) Φva

(
x′
)

= Kk

(
x, x′

)
+

λ
∑

v∈Ak−1

Ψv (x)


 ∑

j∈[1,| x′ |]:x ′j=a

Ψv

(
x′[1,j−1]

)
λ




= Kk

(
x, x′

)
+ λ2

∑

j∈[1,| x′ |]:x ′j=a

Bk−1

(
x, x′[1,j−1]

)
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Summary: Substring indexation

Implementation in O(|x|+ |x′|) in memory and time for the
spectrum and mismatch kernels (with suffix trees)

Implementation in O(k(|x|+ |x′|)) in memory and time for the
spectrum and mismatch kernels (with tries)

Implementation in O(k |x| × |x′|) in memory and time for the
substring kernels

The feature space has high dimension (|A|k), so learning requires
regularized methods (such as SVM)
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Dictionary-based indexation

The approach

Chose a dictionary of sequences D = (x1, x2, . . . , xn)

Chose a measure of similarity s (x, x′)

Define the mapping ΦD (x) = (s (x, xi ))xi∈D

Examples

This includes:

Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function

Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.
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Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel
designs. Important models include HMM for protein sequences, SCFG for
RNA sequences.

Recall: parametric model

A model is a family of distributions

{Pθ, θ ∈ Θ ⊂ Rm} ⊂ M+
1 (X )
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Context-tree model

Definition

A context-tree model is a variable-memory Markov chain:

PD,θ(x) = PD,θ (x1 . . . xD)
n∏

i=D+1

PD,θ (xi | xi−D . . . xi−1)

D is a suffix tree

θ ∈ ΣD is a set of conditional probabilities (multinomials)
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Context-tree model: example

P(AABACBACC ) = P(AAB)θAB(A)θA(C )θC (B)θACB(A)θA(C )θC (A) .
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The context-tree kernel

Theorem (Cuturi et al., 2005)

For particular choices of priors, the context-tree kernel:

K
(
x, x′

)
=
∑

D

∫

θ∈ΣD
PD,θ(x)PD,θ(x

′)w(dθ|D)π(D)

can be computed in O(|x|+ |x′|) with a variant of the Context-Tree
Weighting algorithm.

This is a valid mutual information kernel.

The similarity is related to information-theoretical measure of
mutual information between strings.
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Marginalized kernels

Recall: Definition

For any observed data x ∈ X , let a latent variable y ∈ Y be
associated probabilistically through a conditional probability Px (dy).

Let KZ be a kernel for the complete data z = (x, y)

Then the following kernel is a valid kernel on X , called a
marginalized kernel (Tsuda et al., 2002):

KX
(
x, x′

)
:= EPx(dy)×Px′ (dy

′)KZ
(
z, z′

)

=

∫ ∫
KZ
(
(x, y) ,

(
x′, y′

))
Px (dy)Px′

(
dy′
)
.
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Example: HMM for normal/biased coin toss

S

B

0.5

0.5

0.1
0.1

0.05

0.05N

E

0.85

0.85

Normal (N) and biased (B)
coins (not observed)

Observed output are 0/1 with probabilities:

{
π(0|N) = 1− π(1|N) = 0.5,

π(0|B) = 1− π(1|B) = 0.2.

Example of realization (complete data):

NNNNNBBBBBBBBBNNNNNNNNNNNBBBBBB

1001011101111010010111001111011
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1-spectrum kernel on complete data

If both x ∈ A∗ and y ∈ S∗ were observed, we might rather use the
1-spectrum kernel on the complete data z = (x, y):

KZ
(
z, z′

)
=

∑

(a,s)∈A×S

na,s (z) na,s
(
z′
)
,

where na,s (x, y) for a = 0, 1 and s = N,B is the number of
occurrences of s in y which emit a in x.

Example:

z =1001011101111010010111001111011,
z′ =0011010110011111011010111101100101,

KZ
(
z, z′

)
= n1 (z) n1

(
z′
)
+ n1 (z) n1

(
z′
)
+ n0 (z) n0

(
z′
)
+ n0 (z) n0

(
z′
)

= 7× 15 + 13× 6 + 9× 12 + 2× 1 = 293.
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1-spectrum marginalized kernel on observed data

The marginalized kernel for observed data is:

KX
(
x, x′

)
=

∑

y,y′∈S∗

KZ
(
(x, y) ,

(
x′, y′

))
P (y|x)P

(
y′|x′

)

=
∑

(a,s)∈A×S

Φa,s (x) Φa,s

(
x′
)
,

with
Φa,s (x) =

∑

y∈S∗

P (y|x) na,s (x, y)
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Computation of the 1-spectrum marginalized kernel

Φa,s (x) =
∑

y∈S∗

P (y|x) na,s (x, y)

=
∑

y∈S∗

P (y|x)
{

n∑

i=1

δ (xi , a) δ (yi , s)

}

=
n∑

i=1

δ (xi , a)




∑

y∈S∗

P (y|x) δ (yi , s)





=
n∑

i=1

δ (xi , a)P (yi = s|x) .

and P (yi = s|x) can be computed efficiently by forward-backward
algorithm!
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HMM example (DNA)
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HMM example (protein)
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SCFG for RNA sequences

SFCG rules

S → SS

S → aSa

S → aS

S → a

Marginalized kernel (Kin et al., 2002)

Feature: number of occurrences of each (base,state) combination

Marginalization using classical inside/outside algorithm
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Marginalized kernels in practice

Examples

Spectrum kernel on the hidden states of a HMM for protein
sequences (Tsuda et al., 2002)

Kernels for RNA sequences based on SCFG (Kin et al., 2002)

Kernels for graphs based on random walks on graphs (Kashima et
al., 2004)

Kernels for multiple alignments based on phylogenetic models (Vert
et al., 2006)
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Marginalized kernels: example

PC2

PC1

A set of 74 human tRNA
sequences is analyzed using a
kernel for sequences (the
second-order marginalized
kernel based on SCFG). This
set of tRNAs contains three
classes, called Ala-AGC (white
circles), Asn-GTT (black
circles) and Cys-GCA (plus
symbols) (from Tsuda et al.,
2002).
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Sequence alignment

Motivation

How to compare 2 sequences?

x1 = CGGSLIAMMWFGV

x2 = CLIVMMNRLMWFGV

Find a good alignment:

CGGSLIAMM------WFGV

|...|||||....||||

C-----LIVMMNRLMWFGV
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Alignment score

In order to quantify the relevance of an alignment π, define:

a substitution matrix S ∈ RA×A

a gap penalty function g : N→ R
Any alignment is then scored as follows

CGGSLIAMM------WFGV

|...|||||....||||

C----LIVMMNRLMWFGV

sS,g (π) = S(C ,C ) + S(L, L) + S(I , I ) + S(A,V ) + 2S(M,M)

+ S(W ,W ) + S(F ,F ) + S(G ,G ) + S(V ,V )− g(3)− g(4)
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Local alignment kernel

Smith-Waterman score (Smith and Waterman, 1981)

The widely-used Smith-Waterman local alignment score is defined
by:

SWS ,g (x, y) := max
π∈Π(x,y)

sS,g (π).

It is symmetric, but not positive definite...

LA kernel (Saigo et al., 2004)

The local alignment kernel:

K
(β)
LA (x, y) =

∑

π∈Π(x,y)

exp (βsS ,g (x, y, π)) ,

is symmetric positive definite.
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LA kernel is p.d.: proof (1/11)

Lemma

If K1 and K2 are p.d. kernels, then:

K1 + K2,

K1K2, and

cK1, for c ≥ 0,

are also p.d. kernels

If (Ki )i≥1 is a sequence of p.d. kernels that converges pointwisely to
a function K :

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= lim

n→∞
Ki

(
x, x′

)
,

then K is also a p.d. kernel.
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LA kernel is p.d.: proof (2/11)

Proof of lemma

Let A and B be n × n positive semidefinite matrices. By diagonalization
of A:

Ai ,j =
n∑

p=1

fp(i)fp(j)

for some vectors f1, . . . , fn. Then, for any α ∈ Rn:

n∑

i ,j=1

αiαjAi ,jBi ,j =
n∑

p=1

n∑

i ,j=1

αi fp(i)αj fp(j)Bi ,j ≥ 0.

The matrix Ci ,j = Ai ,jBi ,j is therefore p.d. Other properties are obvious
from definition. □
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LA kernel is p.d.: proof (3/11)

Lemma (direct sum and product of kernels)

Let X = X1 ×X2. Let K1 be a p.d. kernel on X1, and K2 be a p.d.
kernel on X2. Then the following functions are p.d. kernels on X :

the direct sum,

K ((x1, x2) , (y1, y2)) = K1 (x1, y1) + K2 (x2, y2) ,

The direct product:

K ((x1, x2) , (y1, y2)) = K1 (x1, y1)K2 (x2, y2) .
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LA kernel is p.d.: proof (4/11)

Proof of lemma

If K1 is a p.d. kernel, let Φ1 : X1 7→ H be such that:

K1 (x1, y1) = ⟨Φ1 (x1) ,Φ1 (y1)⟩H .

Let Φ : X1 ×X2 → H be defined by:

Φ ((x1, x2)) = Φ1 (x1) .

Then for x = (x1, x2) and y = (y1, y2) ∈ X , we get

⟨Φ ((x1, x2)) ,Φ ((y1, y2))⟩H = K1 (x1, x2) ,

which shows that K (x, y) := K1 (x1, y1) is p.d. on X1 ×X2. The lemma
follows from the properties of sums and products of p.d. kernels. □
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LA kernel is p.d.: proof (5/11)

Lemma: kernel for sets

Let K be a p.d. kernel on X , and let P (X ) be the set of finite subsets of
X . Then the function KP on P (X )× P (X ) defined by:

∀A,B ∈ P (X ) , KP (A,B) :=
∑

x∈A

∑

y∈B
K (x, y)

is a p.d. kernel on P (X ).
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LA kernel is p.d.: proof (6/11)

Proof of lemma

Let Φ : X 7→ H be such that

K (x, y) = ⟨Φ (x) ,Φ (y)⟩H .

Then, for A,B ∈ P (X ), we get:

KP (A,B) =
∑

x∈A

∑

y∈B
⟨Φ (x) ,Φ (y)⟩H

=

〈∑

x∈A
Φ (x) ,

∑

y∈B
Φ (y)

〉

H
= ⟨ΦP(A),ΦP(B)⟩H ,

with ΦP(A) :=
∑

x∈AΦ (x). □
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LA kernel is p.d.: proof (7/11)

Definition: Convolution kernel (Haussler, 1999)

Let K1 and K2 be two p.d. kernels for strings. The convolution of K1

and K2, denoted K1 ⋆ K2, is defined for any x, x′ ∈ X by:

K1 ⋆ K2(x, y) :=
∑

x1x2=x,y1y2=y

K1(x1, y1)K2(x2, y2).

Lemma

If K1 and K2 are p.d. then K1 ⋆ K2 is p.d..
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LA kernel is p.d.: proof (8/11)

Proof of lemma

Let X be the set of finite-length strings. For x ∈ X , let

R (x) = {(x1, x2) ∈ X × X : x = x1x2} ⊂ X × X .

We can then write

K1 ⋆ K2(x, y) =
∑

(x1,x2)∈R(x)

∑

(y1,y2)∈R(y)

K1(x1, y1)K2(x2, y2)

which is a p.d. kernel by the previous lemmas. □
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LA kernel is p.d.: proof (9/11)

3 basic string kernels

The constant kernel:
K0 (x, y) := 1 .

A kernel for letters:

K
(β)
a (x, y) :=

{
0 if | x | ≠ 1 where | y | ≠ 1 ,
exp (βS(x, y)) otherwise .

A kernel for gaps:

K
(β)
g (x, y) = exp [β (g (| x |) + g (| y |))] .
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LA kernel is p.d.: proof (10/11)

Remark

S : A2 → R is the similarity function between letters used in the

alignment score. K
(β)
a is only p.d. when the matrix:

(exp (βs(a, b)))(a,b)∈A2

is positive semidefinite (this is true for all β when s is conditionally
p.d..

g is the gap penalty function used in alignment score. The gap
kernel is always p.d. (with no restriction on g) because it can be
written as:

K
(β)
g (x, y) = exp (βg (| x |))× exp (βg (| y |)) .
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LA kernel is p.d.: proof (11/11)

Lemma

The local alignment kernel is a (limit) of convolution kernel:

K
(β)
LA =

∞∑

n=0

K0 ⋆
(
K

(β)
a ⋆ K

(β)
g

)(n−1)
⋆ K

(β)
a ⋆ K0.

As such it is p.d..

Proof (sketch)

By induction on n (simple but long to write).

See details in Vert et al. (2004).
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LA kernel computation

We assume an affine gap penalty:

{
g(0) = 0,

g(n) = d + e(n − 1) si n ≥ 1,

The LA kernel can then be computed by dynamic programming by:

K
(β)
LA (x, y) = 1 + X2(|x|, |y|) + Y2(|x|, |y|) +M(|x|, |y|),

where M(i , j),X (i , j),Y (i , j),X2(i , j), and Y2(i , j) for 0 ≤ i ≤ |x|,
and 0 ≤ j ≤ |y| are defined recursively.
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LA kernel is p.d.: proof (/)

Initialization




M(i , 0) = M(0, j) = 0,

X (i , 0) = X (0, j) = 0,

Y (i , 0) = Y (0, j) = 0,

X2(i , 0) = X2(0, j) = 0,

Y2(i , 0) = Y2(0, j) = 0,
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LA kernel is p.d.: proof (/)

Recursion

For i = 1, . . . , |x| and j = 1, . . . , |y|:




M(i , j) = exp(βS(xi , yj))
[
1 + X (i − 1, j − 1)

+Y (i − 1, j − 1) +M(i − 1, j − 1)
]
,

X (i , j) = exp(βd)M(i − 1, j) + exp(βe)X (i − 1, j),

Y (i , j) = exp(βd) [M(i , j − 1) + X (i , j − 1)]

+ exp(βe)Y (i , j − 1),

X2(i , j) = M(i − 1, j) + X2(i − 1, j),

Y2(i , j) = M(i , j − 1) + X2(i , j − 1) + Y2(i , j − 1).
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LA kernel in practice

Implementation by a finite-state transducer in O(|x| × |x′|)

a:0/1

a:0/1

a:0/1

a:0/1

0:a/1

0:a/1

0:a/1 0:a/1

0:a/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:a/1

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)
a:0/D

a:0/E

0:b/E

0:b/D

0:b/D

B M E

XX X

YY Y

1

1 2

2

In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)

435 / 785



Outline

5 The Kernel Jungle
Green, Mercer, Herglotz, Bochner and friends
Kernels for probabilistic models
Kernels for biological sequences

Motivations and history of genomics
Kernels derived from large feature spaces
Kernels derived from generative models
Kernels derived from a similarity measure
Application to remote homology detection

Kernels for graphs
Kernels on graphs
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Remote homology

Sequence similarity
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Homologs have common ancestors

Structures and functions are more conserved than sequences

Remote homologs can not be detected by direct sequence
comparison
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SCOP database

Remote homologs

Superfamily

Family

SCOP

Close homologs

Fold
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A benchmark experiment

Goal: recognize directly the superfamily

Training: for a sequence of interest, positive examples come from
the same superfamily, but different families. Negative from other
superfamilies.

Test: predict the superfamily.
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Difference in performance
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Performance on the SCOP superfamily recognition benchmark (from
Saigo et al., 2004).
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String kernels: Summary

A variety of principles for string kernel design have been proposed.

Good kernel design is important for each data and each task.
Performance is not the only criterion.

Still an art, although principled ways have started to emerge.

Fast implementation with string algorithms is often possible.

Their application goes well beyond computational biology.
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1 Kernels and RKHS

2 Kernel tricks

3 Kernel Methods: Supervised Learning

4 Kernel Methods: Unsupervised Learning
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Kernels on graphs

6 Characterizing probabilities with kernels

7 Open Problems and Research Topics
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Virtual screening for drug discovery

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Image retrieval and classification

From Harchaoui and Bach (2007).
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Our approach

1 Represent each graph x in X by a vector Φ(x) ∈ H, either explicitly
or implicitly through the kernel

K (x, x′) = Φ(x)⊤Φ(x′) .

2 Use a linear method for classification in H.

X
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The approach

1 Represent explicitly each graph x by a vector of fixed dimension
Φ(x) ∈ Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX
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Example

2D structural keys in chemoinformatics

Index a molecule by a binary fingerprint defined by a limited set of
predefined structures

O

N

O

O

OO

N N N

O O

O

Use a machine learning algorithm such as SVM, kNN, PLS, decision
tree, etc.
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Challenge: which descriptors (patterns)?

O

N

O

O

OO

N N N

O O

O

Expressiveness: they should retain as much information as possible
from the graph

Computation: they should be fast to compute

Large dimension of the vector representation: memory storage,
speed, statistical issues
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Indexing by substructures

O

N

O

O

OO

N N N

O O

O

Often we believe that the presence or absence of particular
substructures may be important predictive patterns

Hence it makes sense to represent a graph by features that indicate
the presence (or the number of occurrences) of these substructures

However, detecting the presence of particular substructures may be
computationally challenging...

451 / 785



Subgraphs

Definition

A subgraph of a graph (V ,E ) is a graph (V ′,E ′) with V ′ ⊂ V and
E ′ ⊂ E .

A graph and all its connected subgraphs.
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Indexing by all subgraphs?

Theorem

Computing all subgraph occurrences is NP-hard.

Proof

The linear graph of size n is a subgraph of a graph X with n vertices
iff X has a Hamiltonian path;

The decision problem whether a graph has a Hamiltonian path is
NP-complete.
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Paths

Definition

A path of a graph (V ,E ) is a sequence of distinct vertices
v1, . . . , vn ∈ V (i ̸= j =⇒ vi ̸= vj) such that (vi , vi+1) ∈ E for
i = 1, . . . , n − 1.

Equivalently the paths are the linear subgraphs.
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Indexing by all paths?

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Theorem

Computing all path occurrences is NP-hard.

Proof

Same as for subgraphs.
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Indexing by all paths?

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Theorem

Computing all path occurrences is NP-hard.

Proof

Same as for subgraphs.
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Indexing by all paths?

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Theorem
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Proof

Same as for subgraphs.
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Indexing by what?

Substructure selection

We can imagine more limited sets of substructures that lead to more
computationnally efficient indexing (non-exhaustive list)

substructures selected by domain knowledge (MDL fingerprint)

all paths up to length k (Openeye fingerprint, Nicholls 2005)

all shortest path lengths (Borgwardt and Kriegel, 2005)

all subgraphs up to k vertices (graphlet kernel, Shervashidze et al.,
2009)

all frequent subgraphs in the database (Helma et al., 2004)
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Example: Indexing by all shortest path lengths and their
endpoint labels

(0,...,0,2,0,...,0,1,0,...)
A

A

B

B
1

AA

3A B

3A A

A

Properties (Borgwardt and Kriegel, 2005)

There are O(n2) shortest paths.

The vector of counts can be computed in O(n3) with the
Floyd-Warshall algorithm.
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Example: Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

Naive enumeration scales as O(nk).

Enumeration of connected graphlets in O(ndk−1) for graphs with
degree ≤ d and k ≤ 5.

Randomly sample subgraphs if enumeration is infeasible.
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Summary

Explicit computation of substructure occurrences can be
computationnally prohibitive (subgraphs, paths);

Several ideas to reduce the set of substructures considered;

In practice, NP-hardness may not be so prohibitive (e.g., graphs
with small degrees), the strategy followed should depend on the
data considered.
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The idea

1 Represent implicitly each graph x in X by a vector Φ(x) ∈ H
through the kernel

K (x, x′) = Φ(x)⊤Φ(x′) .

2 Use a kernel method for classification in H.

X
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Expressiveness vs Complexity

Definition: Complete graph kernels

A graph kernel is complete if it distinguishes non-isomorphic graphs, i.e.:

∀G1,G2 ∈ X , dK (G1,G2) = 0 =⇒ G1 ≃ G2 .

Equivalently, Φ(G1) ̸= Φ(G2) if G1 and G2 are not isomorphic.

Expressiveness vs Complexity trade-off

If a graph kernel is not complete, then there is no hope to learn all
possible functions over X : the kernel is not expressive enough.

On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical applications.

Can we define tractable and expressive graph kernels?
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Complexity of complete kernels

Proposition (Gärtner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

Proof

For any kernel K the complexity of computing dK is the same as the
complexity of computing K , because:

dK (G1,G2)
2 = K (G1,G1) + K (G2,G2)− 2K (G1,G2) .

If K is a complete graph kernel, then computing dK solves the graph
isomorphism problem (dK (G1,G2) = 0 iff G1 ≃ G2). □
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Subgraph kernel

Definition

Let (λG )G∈X be a set or nonnegative real-valued weights

For any graph G ∈ X and any connected graph H ∈ X , let

ΦH(G ) =
∣∣ {G ′ is a subgraph of G : G ′ ≃ H

} ∣∣ .

The subgraph kernel between any two graphs G1 and G2 ∈ X is
defined by:

Ksubgraph(G1,G2) =
∑

H∈X
H connected

λHΦH(G1)ΦH(G2) .
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Subgraph kernel complexity

Proposition (Gärtner et al., 2003)

Computing the subgraph kernel is NP-hard.

Proof (1/2)

Let Pn be the path graph with n vertices.

Subgraphs of Pn are path graphs:

Φ(Pn) = neP1 + (n − 1)eP2 + . . .+ ePn .

The vectors Φ(P1), . . . ,Φ(Pn) are linearly independent, therefore:

ePn =
n∑

i=1

αiΦ(Pi ) ,

where the coefficients αi can be found in polynomial time (solving
an n × n triangular system).
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Subgraph kernel complexity

Proposition (Gärtner et al., 2003)

Computing the subgraph kernel is NP-hard.

Proof (2/2)

If G is a graph with n vertices, then it has a path that visits each
node exactly once (Hamiltonian path) if and only if Φ(G )⊤ePn > 0,
i.e.,

Φ(G )⊤

(
n∑

i=1

αiΦ(Pi )

)
=

n∑

i=1

αiKsubgraph(G ,Pi ) > 0 .

The decision problem whether a graph has a Hamiltonian path is
NP-complete. □
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Path kernel

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Definition

The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1,G2) =
∑

H∈P
λHΦH(G1)ΦH(G2) ,

where P ⊂ X is the set of path graphs.

Proposition (Gärtner et al., 2003)

Computing the path kernel is NP-hard.
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Summary

Expressiveness vs Complexity trade-off

It is intractable to compute complete graph kernels.

It is intractable to compute the subgraph kernels.

Restricting subgraphs to be linear does not help: it is also
intractable to compute the path kernel.

One approach to define polynomial time computable graph kernels is
to have the feature space be made up of graphs homomorphic to
subgraphs, e.g., to consider walks instead of paths.
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Walks

Definition

A walk of a graph (V ,E ) is sequence of v1, . . . , vn ∈ V such that
(vi , vi+1) ∈ E for i = 1, . . . , n − 1.

We note Wn(G ) the set of walks with n vertices of the graph G ,
and W(G ) the set of all walks.

etc...
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Walks ̸= paths
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Walk kernel

Definition

Let Sn denote the set of all possible label sequences of walks of
length n (including vertex and edge labels), and S = ∪n≥1Sn.
For any graph X let a weight λG (w) be associated to each walk
w ∈ W(G ).

Let the feature vector Φ(G ) = (Φs(G ))s∈S be defined by:

Φs(G ) =
∑

w∈W(G)

λG (w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk(G1,G2) =
∑

s∈S
Φs(G1)Φs(G2) .
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Walk kernel examples

Examples

The nth-order walk kernel is the walk kernel with λG (w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

The random walk kernel is obtained with λG (w) = PG (w), where
PG is a Markov random walk on G . In that case we have:

K (G1,G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independent random walks on G1 and
G2, respectively (Kashima et al., 2003).

The geometric walk kernel is obtained (when it converges) with
λG (w) = βlength(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).
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Computation of walk kernels

Proposition

These three kernels (nth-order, random and geometric walk kernels) can
be computed efficiently in polynomial time.
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Product graph

Definition

Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs with labeled vertices.
The product graph G = G1 × G2 is the graph G = (V ,E ) with:

1 V = {(v1, v2) ∈ V1 × V2 : v1 and v2 have the same label} ,
2 E = {((v1, v2), (v ′1, v ′2)) ∈ V × V : (v1, v

′
1) ∈ E1 and (v2, v

′
2) ∈ E2}.

G1 x G2

c

d e43

2

1 1b 2a 1d

1a 2b

3c

4c

2d

3e

4e

G1 G2

a b
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Walk kernel and product graph

Lemma

There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 × G2).

Corollary

Kwalk(G1,G2) =
∑

s∈S
Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .
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Computation of the nth-order walk kernel

For the nth-order walk kernel we have λG1×G2(w) = 1 if the length
of w is n, 0 otherwise.

Therefore:
Knth-order (G1,G2) =

∑

w∈Wn(G1×G2)

1 .

Let A be the adjacency matrix of G1 × G2. Then we get:

Knth-order (G1,G2) =
∑

i ,j

[An]i ,j = 1⊤An1 .

Computation in O(n|V1||V2|d1d2), where di is the maximum degree
of Gi .
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Computation of random and geometric walk kernels

In both cases λG (w) for a walk w = v1 . . . vn can be decomposed as:

λG (v1 . . . vn) = λi (v1)
n∏

i=2

λt(vi−1, vi ) .

Let Λi be the vector of λi (v) and Λt be the matrix of λt(v , v ′):

Kwalk(G1,G2) =
∞∑

n=1

∑

w∈Wn(G1×G2)

λi (v1)
n∏

i=2

λt(vi−1, vi )

=
∞∑

n=0

ΛiΛ
n
t 1

= Λi (I − Λt)
−1 1

Computation in O(|V1|3|V2|3).
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Extensions 1: Label enrichment

Atom relabeling with the Morgan index (Mahé et al., 2004)

Order 2 indices

N

O

O

1

1

1

1

1

1

1

1

1

N

O

O

2

2

2

3

2

3

1

1

2

N

O

O

4

4

5

7

5

5

3

3

4

No Morgan Indices Order 1 indices

Compromise between fingerprints and structural keys.

Other relabeling schemes are possible.

Faster computation with more labels (less matches implies a smaller
product graph).
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Extension 2: Non-tottering walk kernel

Tottering walks

A tottering walk is a walk w = v1 . . . vn with vi = vi+2 for some i .

Tottering

Non−tottering

Tottering walks seem irrelevant for many applications.

Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).
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Computation of the non-tottering walk kernel (Mahé et al.,
2005)

Second-order Markov random walk to prevent tottering walks

Written as a first-order Markov random walk on an augmented graph

Normal walk kernel on the augmented graph (which is always a
directed graph).
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Extension 3: Subtree kernels

Remark: Here and in subsequent slides by subtree we mean a tree-like
pattern with potentially repeated nodes and edges.
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Example: Tree-like fragments of molecules
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Computation of the subtree kernel (Ramon and Gärtner,
2003; Mahé and Vert, 2009)

Like the walk kernel, amounts to computing the (weighted) number
of subtrees in the product graph.

Recursion: if T (v , n) denotes the weighted number of subtrees of
depth n rooted at the vertex v , then:

T (v , n + 1) =
∑

R⊂N (v)

∏

v ′∈R
λt(v , v

′)T (v ′, n) ,

where N (v) is the set of neighbors of v .

Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.
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Back to label enrichment

Link between the Morgan index and subtrees

Recall the Morgan index:

Order 2 indices

N

O

O

1

1

1

1

1

1

1
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1

N

O

O
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2
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1

2

N

O

O

4

4

5

7

5

5

3

3

4

No Morgan Indices Order 1 indices

The Morgan index of order k at a node v in fact corresponds to the
number of leaves in the k-th order full subtree pattern rooted at v .

1

2

3

4

5

6

1

1 3 1 51 2 4 5

2 63

A full subtree pattern of order 2 rooted at node 1.
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Label enrichment via the Weisfeiler-Lehman algorithm

A slightly more involved label enrichment strategy (Weisfeiler and
Lehman, 1968) is exploited in the definition and computation of the
Weisfeiler-Lehman subtree kernel (Shervashidze and Borgwardt, 2009).

1 Multiset-label determination
and sorting

2 Label compression

3 Relabeling

a

cd

b

a

e

a,d

c,bded,aace

b,ce

a,d

e,bcd

b,ce
f
g

a,d

h
id,aace

e,bcd

c,bde

j

c

j

f f

g

i h

d

b
e

Compressed labels represent full subtree patterns.
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Weisfeiler-Lehman (WL) subtree kernel

a

cd

b

a

e

a

cd

e

b

b

m

f f

h

k j

m

f g

i

l j

G G’

φ          (G) = (2, 1, 1, 1, 1, 2, 0, 1, 0, 1, 1, 0, 1)(1)

WLsubtree

φ          (G’) = (

Counts of 
original 

node labels

Counts of
compressed 
node labels

1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1)(1)

WLsubtree

K           (G,G’)=<  φ          (G), φ          (G’)                     >=11.
(1)

WLsubtree
(1) (1)

WLsubtree WLsubtree

a b c d e f g h i j k l m

a b c d e f g h i j k l m

Properties

The WL features up to the k-th order are computed in O(|E |k).
Similarly to the Morgan index, the WL relabeling can be exploited in
combination with any graph kernel (that takes into account
categorical node labels) to make it more expressive (Shervashidze et
al., 2011).
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Outline

5 The Kernel Jungle
Green, Mercer, Herglotz, Bochner and friends
Kernels for probabilistic models
Kernels for biological sequences
Kernels for graphs

Motivation
Explicit enumeration of features
Challenges
Walk-based kernels
Applications

Kernels on graphs
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Application in chemoinformatics (Mahé et al., 2005)

MUTAG dataset

aromatic/hetero-aromatic compounds

high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.

188 compounds: 125 + / 63 -

Results

10-fold cross-validation accuracy

Method Accuracy

Progol1 81.4%
2D kernel 91.2%
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2D subtree vs walk kernels
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Comparison of several graph feature extraction
methods/kernels (Shervashidze et al., 2011)

10-fold cross-validation accuracy on garph classification problems in
chemo- and bioinformatics:

NCI1 and NCI109 - active/inactive compounds in an anti-cancer screen

ENZYMES - 6 types of enzymes from the BRENDA database

Method/Data Set NCI1 NCI109 ENZYMES

WL subtree 82.19 (± 0.18) 82.46 (±0.24) 52.22 (±1.26)
WL shortest path 84.55 (±0.36) 83.53 (±0.30) 59.05 (±1.05)
Ramon & Gärtner 61.86 (±0.27) 61.67 (±0.21) 13.35 (±0.87)
Geometric p-walk 58.66 (±0.28) 58.36 (±0.94) 27.67 (±0.95)
Geometric walk 64.34 (±0.27) 63.51 (± 0.18) 21.68 (±0.94)
Graphlet count 66.00 (±0.07) 66.59 (±0.08) 32.70 (±1.20)
Shortest path 73.47 (±0.11) 73.07 (±0.11) 41.68 (±1.79)
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Image classification (Harchaoui and Bach, 2007)

COREL14 dataset

1400 natural images in 14 classes

Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
(M).

H W TW wTW M
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0.09
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T
es

t e
rr

or

Kernels

Performance comparison on Corel14
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Summary: graph kernels

What we saw

Kernels do not allow to overcome the NP-hardness of subgraph
patterns.

They allow to work with approximate subgraphs (walks, subtrees) in
infinite dimension, thanks to the kernel trick.

However: using kernels makes it difficult to come back to patterns
after the learning stage.
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Outline

1 Kernels and RKHS

2 Kernel tricks

3 Kernel Methods: Supervised Learning
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7 Open Problems and Research Topics
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Graphs

Motivation

Data often come in the form of nodes in a graph for different reasons:

by definition (interaction network, internet...)

by discretization/sampling of a continuous domain

by convenience (e.g., if only a similarity function is available)
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Example: web
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Example: social network
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Example: protein-protein interaction
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Kernel on a graph

φ

We need a kernel K (x, x′) between nodes of the graph.

Example: predict protein functions from high-throughput
protein-protein interaction data.
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General remarks

Strategies to design a kernel on a graph

X being finite, any symmetric semi-definite matrix K defines a valid
p.d. kernel on X .

How to “translate” the graph topology into the kernel?

Direct geometric approach: Ki,j should be “large” when xi and xj are
“close” to each other on the graph?
Functional approach: ∥ f ∥K should be “small” when f is “smooth”
on the graph?
Link discrete/continuous: is there an equivalent to the continuous
Gaussian kernel on the graph (e.g., limit by fine discretization)?
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Conditionally p.d. kernels

Hilbert distance

Any p.d. kernel is an inner product in a Hilbert space

K
(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉

H .

It defines a Hilbert distance:

dK
(
x, x′

)2
= K (x, x) + K

(
x′, x′

)
− 2K

(
x, x′

)
.

−d2
K is conditionally positive definite (c.p.d.), i.e.:

∀t > 0 , exp
(
−tdK

(
x, x′

)2)
is p.d.
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Example

A direct approach

For X = Rn, the inner product is p.d.:

K (x, x′) = x⊤x′ .

The corresponding Hilbert distance is the Euclidean distance:

dK
(
x, x′

)2
= x⊤x+ x′⊤x′ − 2x⊤x′ = ||x− x′||2 .

−d2
K is conditionally positive definite (c.p.d.), i.e.:

∀t > 0 , exp
(
−t||x− x′||2

)
is p.d.
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Graph distance

Graph embedding in a Hilbert space

Given a graph G = (V ,E ), the graph distance dG (x , x
′) between

any two vertices is the length of the shortest path between x and x ′.

We say that the graph G = (V ,E ) can be embedded (exactly) in a
Hilbert space if −dG is c.p.d., which implies in particular that
exp(−tdG (x , x ′)) is p.d. for all t > 0.

Lemma

In general graphs cannot be embedded exactly in Hilbert spaces.

In some cases exact embeddings exist, e.g.:

trees can be embedded exactly,
closed chains can be embedded exactly.
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Example: non-c.p.d. graph distance

1 5

2

3

4

dG =




0 1 1 1 2
1 0 2 2 1
1 2 0 2 1
1 2 2 0 1
2 1 1 1 0




λmin

([
e(−0.2dG (i ,j))

])
= −0.028 < 0 .
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Graph distances on trees are c.p.d.

Proof

Let G = (V ,E ) be a tree;

Fix a root x0 ∈ V ;

Represent any vertex x ∈ V by a vector Φ(x) ∈ R|E |, where
Φ(x)i = 1 if the i-th edge is part of the (unique) path between x
and x0, 0 otherwise.

Then
dG (x , x

′) = ∥Φ(x)− Φ(x ′) ∥2 ,
and therefore −dG is c.p.d., in particular exp(−tdG (x , x ′)) is p.d.
for all t > 0.
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Example

5
1

3

2
4

[
e−dG (i ,j)

]
=




1 0.14 0.37 0.14 0.05
0.14 1 0.37 0.14 0.05
0.37 0.37 1 0.37 0.14
0.14 0.14 0.37 1 0.37
0.05 0.05 0.14 0.37 1



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Graph distances on closed chains are c.p.d.

Proof: case |V | = 2p

Let G = (V ,E ) be a directed cycle with an even number of vertices
|V | = 2p.

Fix a root x0 ∈ V , number the 2p edges from x0 to x0;

Label the 2p edges with e1, . . . , ep,−e1, . . . ,−ep (vectors in Rp);

For a vertex v , take Φ(v) to be the sum of the labels of the edges in
the shortest directed path between x0 and v .
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Another interesting graph

Cayley graph of S4

Let Sn the set of permutations of n
items (symmetric group)

Cayley graph G : connect two
permutations when they differ by one
adjacent transposition

dG can be computed in O(n log n)
how?

dG is c.p.d. why?

See Jiao and Vert (2017)
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Summary on graph distance

1 5

2

3

4

Some graph distances are c.p.d, some are not

There is a large literature in mathematics on how to ”approximately”
embed a graph; maybe this could be useful for machine learning?

Graph distance is very sensitive to ”noise” in edges

We need other approaches to define a p.d. kernel that would work
for all graphs, and be less sensitive to noise in the edges.
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Functional approach

Motivation

How to design a p.d. kernel on general graphs?

Designing a kernel is equivalent to defining an RKHS.

There are intuitive notions of smoothness on a graph.

Idea

Define a priori a smoothness functional on the functions f : X → R;
Show that it defines an RKHS and identify the corresponding kernel.
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Notations

X = (x1, . . . , xm) is finite.

For x, x′ ∈ X , we note x ∼ x′ to indicate the existence of an edge
between x and x′

We assume that there is no self-loop x ∼ x, and that there is a
single connected component.

The adjacency matrix is A ∈ Rm×m:

Ai ,j =

{
1 if i ∼ j ,

0 otherwise.

D is the diagonal matrix where Di ,i is the number of neighbors of xi
(Di ,i =

∑m
i=1 Ai ,j).
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Example

5
1

3

2
4

A =




0 0 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0



, D =




1 0 0 0 0
0 1 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1



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Graph Laplacian

Definition

The Laplacian of the graph is the matrix L = D − A.

5
1

3

2
4

L = D − A =




1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 −1 1



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Properties of the Laplacian

Lemma

Let L = D − A be the Laplacian of a connected graph:

For any f : X → R,

Ω(f ) :=
∑

i∼j

(f (xi )− f (xj))
2 = f ⊤Lf

L is a symmetric positive semi-definite matrix

0 is an eigenvalue with multiplicity 1 associated to the constant
eigenvector 1 = (1, . . . , 1)

The image of L is

Im(L) =

{
f ∈ Rm :

m∑

i=1

fi = 0

}
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Proof: link between Ω(f ) and L

Ω (f ) =
∑

i∼j

(f (xi )− f (xj))
2

=
∑

i∼j

(
f (xi )

2 + f (xj)
2 − 2f (xi ) f (xj)

)

=
m∑

i=1

Di ,i f (xi )
2 − 2

∑

i∼j

f (xi ) f (xj)

= f ⊤Df − f ⊤Af

= f ⊤Lf

518 / 785



Proof: eigenstructure of L

L is symmetric because A and D are symmetric.

For any f ∈ Rm, f ⊤Lf = Ω(f ) ≥ 0, therefore the (real-valued)
eigenvalues of L are ≥ 0 : L is therefore positive semi-definite.

f is an eigenvector associated to eigenvalue 0
iff f ⊤Lf = 0
iff
∑

i∼j (f (xi )− f (xj))
2 = 0 ,

iff f (xi ) = f (xj) when i ∼ j ,
iff f is constant (because the graph is connected).

L being symmetric, Im(L) is the orthogonal supplement of Ker(L),
that is, the set of functions orthogonal to 1. □
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Our first graph kernel

Theorem

The set H = {f ∈ Rm :
∑m

i=1 fi = 0} endowed with the norm

Ω (f ) =
∑

i∼j

(f (xi )− f (xj))
2

is a RKHS whose reproducing kernel is L∗, the pseudo-inverse of the
graph Laplacian.
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In case of...

Pseudo-inverse of L

Remember the pseudo-inverse L∗ of L is the linear application that is
equal to:

0 on Ker(L)

L−1 on Im(L), that is, if we write:

L =
m∑

i=1

λiuiu
⊤
i

the eigendecomposition of L:

L∗ =
∑

λi ̸=0

(λi )
−1 uiu

⊤
i .

In particular it holds that L∗L = LL∗ = ΠH, the projection onto
Im(L) = H.
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Proof (1/2)

Resticted to H, the symmetric bilinear form:

⟨f , g⟩ = f ⊤Lg

is positive definite (because L is positive semi-definite, and
H = Im(L)). It is therefore a scalar product, making of H a Hilbert
space (in fact Euclidean).

The norm in this Hilbert space H is:

∥ f ∥2 = ⟨f , f ⟩ = f ⊤Lf = Ω(f ) .
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Proof (2/2)

To check that H is a RKHS with reproducing kernel K = L∗, it suffices
to show that:

{
∀x ∈ X , Kx ∈ H ,

∀ (x, f ) ∈ X ×H, ⟨f ,Kx⟩ = f (x) .

Ker(K ) = Ker (L∗) = Ker (L), implying K1 = 0. Therefore, each
row/column of K is in H.
For any f ∈ H, if we note gi = ⟨K (i , ·), f ⟩ we get:

g = KLf = L∗Lf = ΠH(f ) = f .

As a conclusion K = L∗ is the reproducing kernel of H. □
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Example

5
1

3

2
4

L∗ =




0.88 −0.12 0.08 −0.32 −0.52
−0.12 0.88 0.08 −0.32 −0.52
0.08 0.08 0.28 −0.12 −0.32
−0.32 −0.32 −0.12 0.48 0.28
−0.52 −0.52 −0.32 0.28 1.08



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Interpretation of the Laplacian

dx

f

i−1 i i+1

∆f (x) = f ′′(x)

∼ f ′(x + dx/2)− f ′(x − dx/2)

dx

∼ f (x + dx)− f (x)− f (x) + f (x − dx)

dx2

=
fi−1 + fi+1 − 2f (x)

dx2

= −Lf (i)

dx2
.
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Interpretation of regularization

For f = [0, 1]→ R and xi = i/m, we have:

Ω(f ) =
m∑

i=1

(
f

(
i + 1

m

)
− f

(
i

m

))2

∼
m∑

i=1

(
1

m
× f ′

(
i

m

))2

=
1

m
× 1

m

m∑

i=1

f ′
(

i

m

)2

∼ 1

m

∫ 1

0
f ′(t)2dt.
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Outline

5 The Kernel Jungle
Green, Mercer, Herglotz, Bochner and friends
Kernels for probabilistic models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Motivation
Graph distance and p.d. kernels
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications
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Motivation

Consider the normalized Gaussian kernel on Rd :

Kt

(
x, x′

)
=

1

(4πt)
d
2

exp

(
−∥ x− x′ ∥2

4t

)
.

In order to transpose it to the graph, replacing the Euclidean distant
by the shortest-path distance does not work.

In this section we provide a characterization of the Gaussian kernel
as the solution of a partial differential equation involving the
Laplacian, which we can transpose to the graph: the diffusion
equation.

The solution of the discrete diffusion equation will be called the
diffusion kernel or heat kernel.
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The diffusion equation

Lemma

For any x0 ∈ Rd , the function:

Kx0 (x, t) = Kt (x0, x) =
1

(4πt)
d
2

exp

(
−∥ x− x0 ∥2

4t

)

is solution of the diffusion equation:

∂

∂t
Kx0 (x, t) = ∆Kx0 (x, t)

with initial condition Kx0 (x, 0) = δx0(x)

(proof by direct computation).
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Discrete diffusion equation

For finite-dimensional ft ∈ Rm, the diffusion equation becomes:

∂

∂t
ft = −Lft

which admits the following solution:

ft = f0e
−tL

with

e−tL = I − tL+
t2

2!
L2 − t3

3!
L3 + . . .
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Diffusion kernel (Kondor and Lafferty, 2002)

This suggest to consider:
K = e−tL

which is indeed symmetric positive semi-definite because if we write:

L =
m∑

i=1

λiuiu
⊤
i (λi ≥ 0)

we obtain:

K = e−tL =
m∑

i=1

e−tλiuiu
⊤
i
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Example: complete graph

Ki ,j =

{
1+(m−1)e−tm

m for i = j ,
1−e−tm

m for i ̸= j .

532 / 785



Example: closed chain

Ki ,j =
1

m

m−1∑

ν=0

exp

[
−2t

(
1− cos

2πν

m

)]
cos

2πν(i − j)

m
.
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Outline

5 The Kernel Jungle
Green, Mercer, Herglotz, Bochner and friends
Kernels for probabilistic models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Motivation
Graph distance and p.d. kernels
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications
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Motivation

In this section we show that the diffusion and Laplace kernels can be
interpreted in the frequency domain of functions

This shows that our strategy to design kernels on graphs was based
on (discrete) harmonic analysis on the graph

This follows the approach we developed for semigroup kernels!

535 / 785



Spectrum of the diffusion kernel

Let 0 = λ1 < λ2 ≤ . . . ≤ λm be the eigenvalues of the Laplacian:

L =
m∑

i=1

λiuiu
⊤
i (λi ≥ 0)

The diffusion kernel Kt is an invertible matrix because its
eigenvalues are strictly positive:

Kt =
m∑

i=1

e−tλiuiu
⊤
i
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Norm in the diffusion RKHS

Any function f ∈ Rm can be written as f = K
(
K−1f

)
, therefore its

norm in the diffusion RKHS is:

∥ f ∥2Kt
=
(
f ⊤K−1

)
K
(
K−1f

)
= f ⊤K−1f .

For i = 1, . . . ,m, let:
f̂i = u⊤i f

be the projection of f onto the eigenbasis of K .

We then have:

∥ f ∥2Kt
= f ⊤K−1f =

m∑

i=1

etλi f̂ 2i .

This looks similar to
∫ ∣∣∣ f̂ (ω)

∣∣∣
2
eσ

2ω2
dω ...
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Discrete Fourier transform

Definition

The vector f̂ =
(
f̂1, . . . , f̂m

)⊤
is called the discrete Fourier transform of

f ∈ Rn

The eigenvectors of the Laplacian are the discrete equivalent to the
sine/cosine Fourier basis on Rn.

The eigenvalues λi are the equivalent to the frequencies ω2

Successive eigenvectors “oscillate” increasingly as eigenvalues get
more and more negative.
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Examples

● ● ● ● ● ● ● ● ●

2 4 6 8

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

lambda =  0

Lambda = 0

539 / 785



Examples

●

●

●

●

●

●

●

●

●

2 4 6 8

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

lambda =  0.12 Lambda =  0.76
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Examples

●

●

●

●

●

●

●

●

●

2 4 6 8

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

lambda =  0.47 Lambda =  0.83
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●

●
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● ●

●

●

2 4 6 8

−
0.

4
−

0.
2

0.
0

0.
2

0.
4
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●

●

●

●

●

●

●

●

●

2 4 6 8

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

lambda =  1.7 Lambda =  2.2
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Examples

●

●

●

●

●

●

●

●
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−
0.

4
−

0.
2

0.
0

0.
2

0.
4

lambda =  3.9 Lambda =  6.3
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Generalization

This observation suggests to define a whole family of kernels:

Kr =
m∑

i=1

r(λi )uiu
⊤
i

associated with the following RKHS norms:

∥ f ∥2Kr
=

m∑

i=1

f̂ 2i
r(λi )

where r : R+ → R+
∗ is a non-increasing function.
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Example : regularized Laplacian

r(λ) =
1

λ+ ϵ
, ϵ > 0

K =
m∑

i=1

1

λi + ϵ
uiu

⊤
i = (L+ ϵI )−1

∥ f ∥2K = f ⊤K−1f =
∑

i∼j

(f (xi )− f (xj))
2 + ϵ

m∑

i=1

f (xi )
2 .
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Example

5
1

3

2
4

(L+ I )−1 =




0.60 0.10 0.19 0.08 0.04
0.10 0.60 0.19 0.08 0.04
0.19 0.19 0.38 0.15 0.08
0.08 0.08 0.15 0.46 0.23
0.04 0.04 0.08 0.23 0.62



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Outline

5 The Kernel Jungle
Green, Mercer, Herglotz, Bochner and friends
Kernels for probabilistic models
Kernels for biological sequences
Kernels for graphs
Kernels on graphs

Motivation
Graph distance and p.d. kernels
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications
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Applications 1: graph partitioning

A classical relaxation of graph partitioning is:

min
f ∈RX

∑

i∼j

(fi − fj)
2 s.t.

∑

i

f 2i = 1

This can be rewritten

max
f

∑

i

f 2i s.t. ∥ f ∥H ≤ 1

This is principal component analysis in the RKHS (“kernel PCA”)

PC1PC2
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Applications 2: search on a graph

Let x1, . . . , xq be a set of q nodes (the query). How to find
“similar” nodes (and rank them)?

One solution:

min
f
∥ f ∥H s.t. f (xi ) ≥ 1 for i = 1, . . . , q.

545 / 785



Application 3: Semi-supervised learning
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Application 3: Semi-supervised learning
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Application 4: Tumor classification from microarray data
(Rapaport et al., 2006)

Data available

Gene expression measures for more than 10k genes

Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

Goal

Design a classifier to automatically assign a class to future samples
from their expression profile

Interpret biologically the differences between the classes
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Application 4: Tumor classification from microarray data
(Rapaport et al., 2006)

Data available

Gene expression measures for more than 10k genes

Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

Goal

Design a classifier to automatically assign a class to future samples
from their expression profile

Interpret biologically the differences between the classes
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Linear classifiers

The approach

Each sample is represented by a vector x = (x1, . . . , xp) where
p > 105 is the number of probes

Classification: given the set of labeled sample, learn a linear decision
function:

f (x) =

p∑

i=1

βixi + β0 ,

that is positive for one class, negative for the other

Interpretation: the weight βi quantifies the influence of gene i for
the classification
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Linear classifiers

Pitfalls

No robust estimation procedure exist for 100 samples in 105

dimensions!

It is necessary to reduce the complexity of the problem with prior
knowledge.
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Example : Norm Constraints

The approach

A common method in statistics to learn with few samples in high
dimension is to constrain the norm of β, e.g.:

Euclidean norm (support vector machines, ridge regression):
∥β ∥2 =

∑p
i=1 β

2
i

L1-norm (lasso regression) : ∥β ∥1 =
∑p

i=1 |βi |

Pros

Good performance in
classification

Cons

Limited interpretation
(small weights)

No prior biological
knowledge
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Example 2: Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes (< 20) whose
expression are enough for classification. Interpretation is then about the
selected genes.

Pros

Good performance in
classification

Useful for biomarker
selection

Apparently easy
interpretation

Cons

The gene selection
process is usually not
robust

Wrong interpretation is
the rule (too much
correlation between
genes)
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Pathway interpretation

Motivation

Basic biological functions are usually expressed in terms of pathways
and not of single genes (metabolic, signaling, regulatory)

Many pathways are already known

How to use this prior knowledge to constrain the weights to have an
interpretation at the level of pathways?

Solution (Rapaport et al., 2006)

Constrain the diffusion RKHS norm of β

Relevant if the true decision function is indeed smooth w.r.t. the
biological network
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Pathway interpretation

 

N

-

Glycan 
biosynthesis

   

Protein 
kinases

DNA  
and 
RNA 
polymerase 
subunits

Glycolysis / 
Gluconeogenesis 

Sulfur
metabolism

Porphyrin
and 
chlorophyll 
metabolism

Riboflavin metabolism

Folate
biosynthesis

Biosynthesis of steroids, 
ergosterol metabolism

 

Lysine
biosynthesis

Phenylalanine, tyrosine and
tryptophan biosynthesis Purine

metabolism

Oxidative 
phosphorylation, 
TCA cycle

Nitrogen,
asparagine
metabolism

Bad example

The graph is the
complete known
metabolic network of the
budding yeast (from
KEGG database)

We project the classifier
weight learned by a SVM

Good classification
accuracy, but no possible
interpretation!
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Pathway interpretation

Good example

The graph is the complete
known metabolic network
of the budding yeast
(from KEGG database)

We project the classifier
weight learned by a
spectral SVM

Good classification
accuracy, and good
interpretation!
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Part 6

Characterizing probabilities with
kernels
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Introduction

We have seen how to represent each individual data-point by an
embedding in some feature space.

This allows to compare data points by evaluating the kernel.

Now we are interested in comparing two or more sets of data-points,
or more generally distributions of data points.
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Introduction

We have seen how to represent each individual data-point by an
embedding in some feature space.

This allows to compare data points by evaluating the kernel.

Now we are interested in comparing two or more sets of data-points,
or more generally distributions of data points.

Disclaimer: Some of the figures and slides are borrowed from the lecture
by Arthur Gretton which you can find here:
https://www.gatsby.ucl.ac.uk/~gretton/teaching.html
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Motivation I: Comparing two distributions

Data: Samples from unknown distributions P and Q.
Goal: do P and Q differ?

Differences between dogs and fish. 558 / 785



Motivation I: Comparing two distributions

Data: Samples from unknown distributions P and Q.

Goal: do P and Q differ?
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Motivation I: Comparing two distributions

Data: Samples from unknown distributions P and Q.

Goal: do P and Q differ?

Difference in brain signals: Do local field potential (LFP) signals change
when measured near a spike burst?
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Motivation I: Comparing two distributions

Data: Samples from unknown distributions P and Q.

Goal: do P and Q differ?

Difference in brain signals: Do local field potential (LFP) signals change
when measured near a spike burst?

Comparaing the means?
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Motivation II: Detecting dependence
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Motivation II: Detecting dependence
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1 Kernels and RKHS

2 Kernel tricks

3 Kernel Methods: Supervised Learning
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Feature mean difference

Simple example: Samples from 2 Gaussians with same variance but
different means.

Idea: Look at difference in means of features of the samples.

Compare

µ̂P =
1

N

N∑

i=1

xi ,

µ̂Q =
1

M

M∑

j=1

yj
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Feature mean difference

Simple example: Samples from 2 Gaussians with same mean but
different variances.

Idea: Look at difference in means of features of the samples. Here
φ(x) = (x , x2).

Compare

µ̂P =
1

N

N∑

i=1

φ(xi ),

µ̂Q =
1

M

M∑

j=1

φ(yj)
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Feature mean difference

Simple example: Centered Gaussian and Laplace distributions: same
mean and variance.
Idea: Look at difference in means of high order features of the
samples: φ(x) = (x , x2, ...) (RKHS).

Compare

µ̂P =
1

N

N∑

i=1

φ(xi ),

µ̂Q =
1

M

M∑

j=1

φ(yj)
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Kernel Mean Embedding

Definition

Given a kernel K defined on a topological set X with corresponding
RKHS H, the mean embedding of a Borel probability distribution P on X
is the function µP : X → R in H defined as

µP(y):=EX∼P[K (X , y)]
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Kernel Mean Embedding

Definition

Given a kernel K defined on a topological set X with corresponding
RKHS H, the mean embedding of a Borel probability distribution P on X
is the function µP : X → R in H defined as

µP(y):=EX∼P[K (X , y)]

For any x , x ′ in X ,

K (x , x ′) = ⟨Kx ,Kx ′⟩H,

The kernel trick:
For any f ∈ H and x ∈ X ,

f (x) = ⟨f ,Kx⟩H
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Kernel Mean Embedding

Definition

Given a kernel K defined on a topological set X with corresponding
RKHS H, the mean embedding of a Borel probability distribution P on X
is the function µP : X → R in H defined as

µP(y):=EX∼P[K (X , y)]

For any x , x ′ in X ,

K (x , x ′) = ⟨Kx ,Kx ′⟩H,

The kernel trick:
For any f ∈ H and x ∈ X ,

f (x) = ⟨f ,Kx⟩H

For any Borel measure P and Q,

E(X ,Y )∼P,QK (X ,Y ) = ⟨µP, µQ⟩H,

The generalized kernel trick:
For any f ∈ H and Borel measure P,

EX∼P[f (X )] = ⟨f , µP⟩H
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Kernel Mean Embedding

Kernel Mean Embedding

The kernel mean embedding: µP = EX∼P[KX ]
The generalized kernel trick: EX∼P[f (X )] = ⟨f , µP⟩H for all f ∈ H.
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Kernel Mean Embedding

Kernel Mean Embedding

The kernel mean embedding: µP = EX∼P[KX ]
The generalized kernel trick: EX∼P[f (X )] = ⟨f , µP⟩H for all f ∈ H.

Mean embedding µP summarizes P:
Can compute expectations under P of
all functions in H using µP.

In practice, you can estimate µP using
N i.i.d. samples from P:

µ̂P(x) =
1

N

N∑

i=1

K (Xi , x), Xi
i .i .d .∼ P
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Kernel Mean Embedding

The kernel mean embedding: µP = EX∼P[KX ]
The generalized kernel trick: EX∼P[f (X )] = ⟨f , µP⟩H for all f ∈ H.

Mean embedding µP summarizes P:
Can compute expectations under P of
all functions in H using µP.

In practice, you can estimate µP using
N i.i.d. samples from P:

µ̂P(x) =
1

N

N∑

i=1

K (Xi , x), Xi
i .i .d .∼ P
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Kernel Mean Embedding

Kernel Mean Embedding

The kernel mean embedding: µP = EX∼P[KX ]
The generalized kernel trick: EX∼P[f (X )] = ⟨f , µP⟩H for all f ∈ H.

Mean embedding µP summarizes P:
Can compute expectations under P of
all functions in H using µP.

In practice, you can estimate µP using
N i.i.d. samples from P:

µ̂P(x) =
1

N

N∑

i=1

K (Xi , x), Xi
i .i .d .∼ P

Does the mean embedding µP exist? i.e. an element µP ∈ H such that

EX∼P[f (X )] = ⟨f , µP⟩H,∀f ∈ H.
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Existence of mean embeddings

Proposition

Let P be a Borel probability distribution on a set X endowed with its
Borel sigma algebra. Let K be a p.d. kernel defined on X with
corresponding RKHS H. Assume that EX∼P[

√
K (X ,X )] <∞. Then

there exits a unique element µP ∈ H such that

EX∼P[f (X )] = ⟨f , µP⟩H,∀f ∈ H.

In particular, for any y ∈ X , it holds that:

µP(y) = ⟨Ky , µP⟩ = EX∼P[K (X , y)].
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Existence of mean embeddings

Proposition

Let P be a Borel probability distribution on a set X endowed with its
Borel sigma algebra. Let K be a p.d. kernel defined on X with
corresponding RKHS H. Assume that EX∼P[

√
K (X ,X )] <∞. Then

there exits a unique element µP ∈ H such that

EX∼P[f (X )] = ⟨f , µP⟩H,∀f ∈ H.

In particular, for any y ∈ X , it holds that:

µP(y) = ⟨Ky , µP⟩ = EX∼P[K (X , y)].

Proof:
The linear form on H: TPf = EX∼P[f (X )] is bounded by assumption:

|TPf | ≤ EX∼P[|f (X )|] = EX∼P[|⟨f ,KX ⟩H|] ≤ EX∼P[
√
K (X ,X )∥f ∥H].

Hence, by Riesz’s theorem, there exists µP ∈ H such that TPf=⟨f , µP⟩H.
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Motivation: Comparing two distributions

Data: Samples from unknown distributions P and Q.

Goal: do P and Q differ?

Differences between dogs and fish.
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The Maximum Mean Discrepancy

The maximum mean discrepancy (MMD) is the RKHS distance between
mean embeddings:

MMD2(P,Q) =∥µP − µQ∥2H

=⟨µP, µP⟩H + ⟨µQ, µQ⟩H − 2⟨µP, µQ⟩H
=EX ,X ′∼P⊗P[k(X ,X

′)] + EY ,Y ′∼Q⊗Q[k(Y ,Y
′)]

− 2EX ,Y∼P⊗Q[k(X ,Y )]
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The Maximum Mean Discrepancy

The maximum mean discrepancy (MMD) is the RKHS distance between
mean embeddings:

MMD2(P,Q) =∥µP − µQ∥2H
=⟨µP, µP⟩H + ⟨µQ, µQ⟩H − 2⟨µP, µQ⟩H
=EX ,X ′∼P⊗P[k(X ,X

′)] + EY ,Y ′∼Q⊗Q[k(Y ,Y
′)]

− 2EX ,Y∼P⊗Q[k(X ,Y )]

Intra-similarity terms : EX ,X ′∼P⊗P[k(X ,X
′)] and

EY ,Y ′∼Q⊗Q[k(Y ,Y
′)].

Inter-similarity term: EX ,Y∼P⊗Q[k(X ,Y )].
In general, MMD is a semi-metric: (MMD(P,Q) = 0 ⇏ P = Q).
For some kernels (called characteristic kernels), MMD is a metric
(MMD(P,Q) = 0 ⇐⇒ P = Q).
From now on, we assume MMD is a metric. Later, we’ll say more
about characteristic kernels. 572 / 785



Unbiased esitimation of the MMD

Data: i.i.d. samples from P and Q
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Unbiased esitimation of the MMD

Data: i.i.d. samples from P and Q

Biased estimate of the MMD2:

̂MMD2(P,Q) =
1

N2

∑

i ,j

K (dogi , dogj) +
1

M2

∑

i ,j

K (fishi , fishj)

− 2

NM

∑

i ,j

k(dogi , fishj)
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Unbiased esitimation of the MMD

Data: i.i.d. samples from P and Q

Unbiased estimate of the MMD2:

̂MMD2(P,Q) =
1

N(N − 1)

∑

i ̸=j

K (dogi , dogj) +
1

M(M − 1)

∑

i ̸=j

K (fishi , fishj)

− 2

NM

∑

i ,j

k(dogi , fishj)
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MMD as an Integral Probability Metric

Integral Probability Metric

Let F be a set of measurable functions. An integral probability metric
associated to the class F is a semi-metric defined as

DF (P,Q) := sup
f ∈F

EX∼P[f (X )]− EY∼Q[f (Y )].
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Integral Probability Metric

Let F be a set of measurable functions. An integral probability metric
associated to the class F is a semi-metric defined as

DF (P,Q) := sup
f ∈F

EX∼P[f (X )]− EY∼Q[f (Y )].

MMD obtained by choosing F = {f ∈ H|∥f ∥H ≤ 1}:
MMD(P,Q) := sup

f ∈H
∥f ∥H≤1

EX∼P[f (X )]− EY∼Q[f (Y )]
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MMD as an Integral Probability Metric

Integral Probability Metric

Let F be a set of measurable functions. An integral probability metric
associated to the class F is a semi-metric defined as

DF (P,Q) := sup
f ∈F

EX∼P[f (X )]− EY∼Q[f (Y )].

MMD obtained by choosing F = {f ∈ H|∥f ∥H ≤ 1}:
MMD(P,Q) := sup

f ∈H
∥f ∥H≤1

EX∼P[f (X )]− EY∼Q[f (Y )]

Other choices for the set F :
Bounded continuous → Dudley’s metric.
Bounded variations → Kolmogorov metric.
Bounded Lipschitz → 1-Wasserstein distance.
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MMD as an Integral Probability Metric

MMD obtained by choosing F = {f ∈ H|∥f ∥H ≤ 1}:

MMD(P,Q) = sup
f ∈H

∥f ∥H≤1

EX∼P[f (X )]− EY∼Q[f (Y )]
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MMD as an Integral Probability Metric

MMD obtained by choosing F = {f ∈ H|∥f ∥H ≤ 1}:

MMD(P,Q) = sup
f ∈H

∥f ∥H≤1

EX∼P[f (X )]− EY∼Q[f (Y )]

= sup
f ∈H

∥f ∥H≤1

⟨f , µP − µQ⟩H

=⟨f ⋆, µP − µQ⟩H
=∥µP − µQ∥H
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MMD as an Integral Probability Metric

MMD obtained by choosing F = {f ∈ H|∥f ∥H ≤ 1}:

MMD(P,Q) = sup
f ∈H

∥f ∥H≤1

EX∼P[f (X )]− EY∼Q[f (Y )]

= sup
f ∈H

∥f ∥H≤1

⟨f , µP − µQ⟩H

=⟨f ⋆, µP − µQ⟩H
=∥µP − µQ∥H

f ⋆ =
µP − µQ
∥µP − µQ∥

f ⋆ is called the
witness function
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6 Characterizing probabilities with kernels
Kernel mean embedding
The Maximum Mean Discrepancy

Applications (I): Statistical testing using the MMD
Applications (II): Learning generative models

Characteristic kernels
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A statistical test using MMD

Data: Samples x1, ..., xN and y1, ..., yN from unknown distributions
P and Q.

Goal: Is P = Q?
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A statistical test using MMD

Data: Samples x1, ..., xN and y1, ..., yN from unknown distributions
P and Q.

Goal: Is P = Q?

Empirial estimate of the MMD:

̂MMD2(P,Q) =
1

N(N − 1)

∑

i ̸=j

K (xi , xj) +
1

N(N − 1)

∑

i ̸=j

K (yi , yj)

− 2

N2

∑

i ,j

K (xi , yj)
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A statistical test using MMD

Data: Samples x1, ..., xN and y1, ..., yN from unknown distributions
P and Q.

Goal: Is P = Q?

Empirial estimate of the MMD:

̂MMD2(P,Q) =
1

N(N − 1)

∑

i ̸=j

K (xi , xj) +
1

N(N − 1)

∑

i ̸=j

K (yi , yj)

− 2

N2

∑

i ,j

K (xi , yj)

Null hypothesis h0 when P = Q.
̂MMD2(P,Q) should be close to zero.

Alternative hypothesis h1 when P ̸= Q.
̂MMD2(P,Q) should be far away from zero.

What do close or far away mean here?
578 / 785



Behaviour of MMD when P ̸= Q
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Behaviour of MMD when P ̸= Q

The statistic ̂MMD2(P,Q) is asymptotically normal [Gretton, 2006]:
√
n( ̂MMD2(P,Q)−MMD2(P,Q))√

V (P,Q)
→ N (0, 1).

where V (P,Q) is the asymptotic variance of
√
n × ( ̂MMD2(P,Q)).
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Behaviour of MMD when P = Q
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Behaviour of MMD when P = Q

n ̂MMD2(P,Q) has an asymptotic
distribution [Gretton, 2006]:

n ̂MMD2(P,Q) ∼ 2
∞∑

i=1

λi (z
2
i −1)
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Behaviour of MMD when P = Q

n ̂MMD2(P,Q) has an asymptotic
distribution [Gretton, 2006]:

n ̂MMD2(P,Q) ∼ 2
∞∑

i=1

λi (z
2
i −1)

zi are i.i.d. standard gaussians: zi ∼ N (0, 1)

λi are eigenvalues of the operator f 7→ EX∼P[K̃ (X ,X ′)f (X )]

K̃ the centered kernel:

K̃ (x , x ′) = ⟨K (x , .)− µP,K (x ′, .)− µP⟩H.
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A statistical test using MMD

T0 := n ̂MMD2(P,Q) ≈
{
nMMD2(P,Q) +

√
nN (0,V (P,Q)), P ̸= Q

2
∑∞

i=1 λi (z
2
i − 1), P = Q.
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A statistical test using MMD

Fix a significance level α
and quantile cα s.t.
P(T0 > cα|h0) = α.

If T0 ≥ cα, reject the
null, i.e. (P = Q
unlikely)

Otherwise, cannot reject
(P = Q is likely).

T0 := n ̂MMD2(P,Q) ≈
{
nMMD2(P,Q) +

√
nN (0,V (P,Q)), P ̸= Q

2
∑∞

i=1 λi (z
2
i − 1), P = Q.
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A statistical test using MMD

Fix a significance level α
and quantile cα s.t.
P(T0 > cα|h0) = α.

If T0 ≥ cα, reject the
null, i.e. (P = Q
unlikely)

Otherwise, cannot reject
(P = Q is likely).

How can we tell if T0 := n ̂MMD2(P,Q) ≥ cα?

Let T be a r.v. under the null distribution: T ∼ 2
∑∞

i=1 λi (z
2
i − 1).

If the p-value p := PT (T > T0) ≤ α, then T0 ≥ cα.

For T1, ...,TJ samples from the null: p≈|{j |Tj ≥ T0}|/J.
Can use a permutation test to construct T1, ...,TJ .
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A statistical test using MMD

For each permutation j set Tj=nMMD2(P̃, Q̃)
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A statistical test using MMD

For each permutation j set Tj=nMMD2(P̃, Q̃) 583 / 785



A statistical test using MMD

Fix a significance level α
(usually a small value:
0.05.)

If T0 ≥ cα, reject the
null, i.e. (P = Q
unlikely)

Otherwise, cannot reject
(P = Q is likely).

How can we tell if T0 := n ̂MMD2(P,Q) ≥ cα?

Let T be a r.v. under the null distribution: T ∼ 2
∑∞

i=1 λi (z
2
i − 1).

If the p-value p := PT (T > T0) ≤ α, then T0 ≥ cα.

For T1, ...,TJ samples from the null: p≈|{j |Tj ≥ T0}|/J.
Can use a permutation test to construct T1, ...,TJ .
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Characteristic kernels
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Given samples from a distribution P over X , want a model that can
produce new samples from Q ≈ P

X ∼ P Y ∼ Q

EGM: Q has density q(Y ).

Support: the whole space.

Training using maximum
likelihood or score
matching.

Sampling using MCMC.

IGM: Y=G (Z ) ∼ Q with known Z∼µ.
Support: low dimensional
[Arjovsky 2017].

Training by minimizing some well
chosen divergence D(P,Q).

Sampling by pushing µ forward
with G .
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EGM: Q has density q(Y ).

Support: the whole space.

Training using maximum
likelihood or score
matching.

Sampling using MCMC.

IGM: Y=G (Z ) ∼ Q with known Z∼µ.
Support: low dimensional
[Arjovsky 2017].

Training by minimizing some well
chosen divergence D(P,Q).

Sampling by pushing µ forward
with G .
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Generative Adversarial Networks

Many successful applications:

Single-image super-resolution

Why Worth Studying?  

• Image generation tasks 
– Example: single-image super-resolution 

 
 

Ledig et al 2015 
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Generative Adversarial Networks

Many successful applications:

Image to image translation

Why Worth Studying?  

• Image generation tasks 
– Example: Image-to-Image Translation 
– https://affinelayer.com/pixsrv/ 

 

Isola et al 2016 
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Generative Adversarial Networks

Many successful applications:

Text to image generation

Why Worth Studying?  

• Image generation tasks 
– Example: Text-to-Image Generation 

 

Zhang et al 2016 
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Adversarial training [Goodfellow 2014]

Divergence D(P,Q) defined by maximizing a variational objective G:

D(P,Q) := sup
f ∈F
G(f ,P,Q)

Critic: maximizes G(f ,P,Q) over f ∈ F to find optimal critic f ⋆.

Generator: minimizes D(P,Q)=G(f ⋆,P,Q) over Q.

Recover the MMD when F is the unit ball in an RKHS H.
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Learning generative models using MMD

Goal is to solve the optimization problem:

min
θ

MMD2(P,Qθ)
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Learning generative models using MMD

Goal is to solve the optimization problem:

min
θ

MMD2(P,Qθ)

1 Sample a mini-batch of i.i.d samples X1, ...,XB ∼ P from data-set.

2 Sample a mini-batch of i.i.d. latent noise Z1, ...,ZB ∼ µ.
3 Generate IGM samples Yb = Gθ(Zb) ∼ Qθ for 1 ≤ b ≤ B.

4 Compute empirical loss L̂(θ) := M̂MD2(P,Qθ). (Differentiable in θ)

5 Update parameters of the model using SGD:

θ ← θ − γ∇L̂(θ).
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Learning generative models using MMD

IGM trained using an RBF kernel on MNIST dataset.

In practice, choice of the kernel is crucial for good performance.
Hard to design a kernel for high dimensional data like images.
Why not learning it?
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Learning generative models using MMD

Goal is to solve the optimization problem:

min
θ

sup
k∈K

MMD2
k (P,Qθ)

K is a family of kernels,

ex: parmaterized by a neural network:

k(x , y) = h(φ(x), φ(y))

where φ is a NN and h is a fixed p.d. kernel.

Adaptively select an MMD that best discriminates between P and
current model Q.

In practice, alternate between gradient steps on k and on θ:
(Adversarial training).
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Learning generative models using MMD

IGM trained on MNIST dataset.

592 / 785



Learning generative models using MMD

IGM trained on CelebA dataset.

[A., Sutherland , Binkowski and Gretton, 2018]
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Learning generative models using MMD

IGM trained on CelebA dataset.

[A., Sutherland , Binkowski and Gretton, 2018]

More to the story: regularization, stability in optimization,
evaluation, etc
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Summary

It is possible to represent probability distributions using kernels
through the concept of mean embeddings.

The maximum mean discrepancy (MMD), allows to compare
probabilities by comparing their mean embeddings.

MMD can be used for various applications:

Two sample tests
Learning implicit generative models (like GANs)

Other applications include

Dependence detection
Feature selection
Bling source separaion (e.g. ICA)

Often assume good kernels which do not discard information about
distributions: characteristic kernels.
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Can mean embeddings characterize probabilities?

Question: Given two probability distributions P and Q with mean
embeddings µP and µQ, can we confidently tell if P and Q are different
or not based only on the summary given by µP and µQ?
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Can mean embeddings characterize probabilities?

Question: Given two probability distributions P and Q with mean
embeddings µP and µQ, can we confidently tell if P and Q are different
or not based only on the summary given by µP and µQ?

Example 1: Linear kernel K (x , x ′) = x⊤x ′.

Compare

µP(x) = EX∼P[X ]⊤x

̸=
µQ(x) = EX∼Q[X ]⊤x
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Can mean embeddings characterize probabilities?

Question: Given two probability distributions P and Q with mean
embeddings µP and µQ, can we confidently tell if P and Q are different
or not based only on the summary given by µP and µQ?

Example 2: Polynomial kernel K (x , x ′) = (x⊤x ′)2.

µP(x) = Tr(EX∼P[XX
⊤]xx⊤)

̸=
µQ(x) = Tr(EX∼Q[XX

⊤]xx⊤)
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Can mean embeddings characterize probabilities?

Question: Given two probability distributions P and Q with mean
embeddings µP and µQ, can we confidently tell if P and Q are different
or not based only on the summary given by µP and µQ?

Example 2: Polynomial kernel of order 2: K (x , x ′) = (x⊤x ′)2.

µP(x) = Tr(EX∼P[XX
⊤]xx⊤)

=

µQ(x) = Tr(EX∼Q[XX
⊤]xx⊤)
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Can mean embeddings characterize probabilities?

Question: Are there kernels for which two mean embeddings µP and µQ
are equal iff P = Q?
Example 3: Exponential kernel K (x , y) = exp(x⊤y).

µP(y) = EX∼P[exp(X
⊤y)]
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Example 3: Exponential kernel K (x , y) = exp(x⊤y).

µP(y) = EX∼P[exp(X
⊤y)]︸ ︷︷ ︸

Moment generating function

Classical result: If two probability distributions P and Q have the same
moment generating functions, then P = Q, meaning that:

EX∼P[f (X )] = EY∼Q[f (Y )], ∀f ∈ Cb(X ).
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Can mean embeddings characterize probabilities?

Question: Are there kernels for which two mean embeddings µP and µQ
are equal iff P = Q?
Example 3: Exponential kernel K (x , y) = exp(x⊤y).

µP(y) = EX∼P[exp(X
⊤y)]︸ ︷︷ ︸

Moment generating function

Classical result: If two probability distributions P and Q have the same
moment generating functions, then P = Q, meaning that:

EX∼P[f (X )] = EY∼Q[f (Y )], ∀f ∈ Cb(X ).

Intuitively: The RKHS and, in particular, the set of functions
{Ky : x 7→ exp(x⊤y)}y∈X is rich enough so that
EP[Ky (X )] = EQ[Ky (X )] for all y ∈ X guarantees that P = Q.

596 / 785



Characteristic kernels

Definition

Let X be a topological set and P the set of Borel probability measures
on X . Consider a bounded measurable p.d. kernel K defined on X and
let H be its RKHS. The kernel K is said to be characteristic if the map
P ∋ P 7→ µP = EX∼P[KX ] ∈ H is injective, i.e.:

∀P,Q ∈ P : µP = µQ =⇒ P = Q.

Equality of mean embeddings ⇐⇒ equality of expectations of
functions in H, i.e.:

µP = µQ ⇐⇒ EX∼P[f (X )] = EY∼Q[f (Y )], ∀f ∈ H

Equality of probability distributions ⇐⇒ Equality of expectations
of continuous and bounded functions on X , i.e.:

P = Q ⇐⇒ EX∼P[f (X )] = EY∼Q[f (Y )], ∀f ∈ Cb(X ).
A kernel K is characteristic if RKHS H is rich enough!
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on X . Consider a bounded measurable p.d. kernel K defined on X and
let H be its RKHS. The kernel K is said to be characteristic if the map
P ∋ P 7→ µP = EX∼P[KX ] ∈ H is injective, i.e.:

∀P,Q ∈ P : µP = µQ =⇒ P = Q.

Equality of mean embeddings ⇐⇒ equality of expectations of
functions in H, i.e.:

µP = µQ ⇐⇒ EX∼P[f (X )] = EY∼Q[f (Y )], ∀f ∈ H
Equality of probability distributions ⇐⇒ Equality of expectations
of continuous and bounded functions on X , i.e.:

P = Q ⇐⇒ EX∼P[f (X )] = EY∼Q[f (Y )], ∀f ∈ Cb(X ).
A kernel K is characteristic if RKHS H is rich enough!

597 / 785



Characteristic kernels via Universality

Definition

Let K be a p.d. kernel with RKHS H on a compact set X . K is universal
if y 7→ K (x , y) is continuous for all x ∈ X and H is dense in C(X ) in the
maximum norm ∥.∥∞.
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Let K be a p.d. kernel with RKHS H on a compact set X . K is universal
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maximum norm ∥.∥∞.

Proposition

Assume X is compact. If K is universal, then K is characteristic.
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Characteristic kernels via Universality

Definition

Let K be a p.d. kernel with RKHS H on a compact set X . K is universal
if y 7→ K (x , y) is continuous for all x ∈ X and H is dense in C(X ) in the
maximum norm ∥.∥∞.

Proposition

Assume X is compact. If K is universal, then K is characteristic.

proof: Let P and Q such that µP = µQ. We need to show that

EX∼P[f (X )] = EY∼Q[f (Y )], ∀f ∈ C(X ).

Fix f ∈ C(X ). By universality of K , H is dense in C(X ) in the sup norm.
Hence, for any ϵ > 0, there exists g ∈ H such that ∥f − g∥∞ ≤ ϵ.
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Characteristic kernels via Universality

Proof Next we make the expansion

|EX∼P[f (X )]− EY∼Q[f (Y )]| ≤|EX∼P[f (X )]− EX∼P[g(X )]|
+ |EY∼Q[f (Y )]− EY∼Q[g(Y )]|
+ |EX∼P[g(X )]− EY∼Q[g(Y )]|.

The first two terms are upper-bounded by ϵ by definition of g .The last
term is equal to 0 since EX∼P[g(X )]− EY∼Q[g(Y )] = ⟨g , µP − µQ⟩H
and µP = µQ by assumption.
Hence, we have shown that for any ϵ > 0:

|EX∼P[f (X )]− EY∼Q[f (Y )]| ≤ 2ϵ

directly implying that |EX∼P[f (X )]− EY∼Q[f (Y )]| = 0.
The above holds for any f ∈ C(X ), meaning that P = Q.
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Criteria for Universality

Proposition (Steinwart 2001)

Let 0 < r ≤ ∞ and f : (−r , r)→ R be a C∞ function that admits an
expansion as a Taylor series in 0: f (x) =

∑∞
i=0 aix

i . Let X be a compact
set in the open centered ball in Rd of radius

√
r . If ai > 0 for all i ≥ 0,

then k(x , y) = f (⟨x , y⟩) defines a universal kernel on X .
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i . Let X be a compact
set in the open centered ball in Rd of radius

√
r . If ai > 0 for all i ≥ 0,

then k(x , y) = f (⟨x , y⟩) defines a universal kernel on X .

Example 1: Exp kernel: K (x , y) = exp ⟨x , y⟩ on any compact X .

f (x) = exp(x) =
∞∑

i=0

1

i !
x i , K (x , y) = f (⟨x , y⟩).
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f (x) = exp(x) =
∞∑

i=0

1

i !
x i , K (x , y) = f (⟨x , y⟩).

Example 2: Gaussian kernel on the Unit Sphere
K (x , y) = exp (−1

2∥x − y∥2).

f (x) = e−1 exp(x) = e−1
∞∑

i=0

1

i !
x i , K (x , y) = f (⟨x , y⟩).
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Criteria for Universality

Proposition (Steinwart 2001)

Let f : [0, 2π]→ R be a continuous function that can be expanded in a
pointwise absolutely convergent Fourier series: f (t)=

∑∞
n=0 ancos(nt).

If an > 0 for all n ≥ 0, then the Kernel K (x , y):=
∏d

i=1 f (|xi − yi |)
defines a universal kernel on every compact subset of [0, 2π)d .
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Proposition (Steinwart 2001)

Let f : [0, 2π]→ R be a continuous function that can be expanded in a
pointwise absolutely convergent Fourier series: f (t)=

∑∞
n=0 ancos(nt).

If an > 0 for all n ≥ 0, then the Kernel K (x , y):=
∏d

i=1 f (|xi − yi |)
defines a universal kernel on every compact subset of [0, 2π)d .

Example 1: The stronger regularized Fourier kernel (Vapnik 1998, p.470)

k(x , y) = (1− q2)/(2− 4qcos(x − y) + 2q2)

for any 0 < q < 1.
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Just in case ...

Theorem: Stone-Weierstrass

Let (X , d) be a compact metric space and A a linear subspace of C(X ).
Then A is dense in C(X ) if

A is an algebra for the product of functions.

A does not vanish: For all x ∈ X , there exists f ∈ A s.t. f (x) ̸= 0.

A separates points: For all x , y ∈ X with x ̸= y , there exists f ∈ A,
s.t. f (x) ̸= f (y).

Definition (Algebra)

Let A be a vector space and × : A× A→ A be a binary operation on A.
Then A is an algebra if × is bilinear, i.e. for all x , y , z ∈ A and a, b ∈ R:

z × (x + y) = z × x + z × y

(x + y)× z = x × z + y × z

(ax)× (by) = (ab)(x × y).
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General criterion for Universality

Theorem: General criterion for universality (Steinwart, 2001)

Let X be a compact metric space and k be a continuous kernel on X
with k(x , x) > 0. Suppose there is an injective map Φ(x) = {φi (x)}i≥0

such that k(x , y) =
∑∞

i=0 φi (x)φi (y). If the set A := span{φi |i ≥ 0} is
an algebra, then k is universal.
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Theorem: General criterion for universality (Steinwart, 2001)

Let X be a compact metric space and k be a continuous kernel on X
with k(x , x) > 0. Suppose there is an injective map Φ(x) = {φi (x)}i≥0

such that k(x , y) =
∑∞

i=0 φi (x)φi (y). If the set A := span{φi |i ≥ 0} is
an algebra, then k is universal.

Proof:

A is a subset of C(X ). Follows by continuity of the map x 7→ Φ(x).
Indeed, ∥Φ(x)−Φ(y)∥2=K (x , x)+K (y , y)−2K (x , y)≤ϵ for any
ϵ > 0 provided that y is close enough to x since K is continuous.

A does not vanish. Otherwise, we can find x such that φi (x) = 0 for
all i ≥ 0, meaning that K (x , x) = 0: contradicts K (x , x) > 0.

A separates points. Otherwise, there exists x , y with x ̸=y and
φi (x)=φi (y) for all i≥0, hence Φ(x)=Φ(y): contradicts Φ injective.

Hence A is dense in C(X ) by Stone-Weierstrass theorem.
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General criterion for Universality

Theorem: General criterion for universality (Steinwart, 2001)

Let X be a compact metric space and k be a continuous kernel on X
with k(x , x) > 0. Suppose there is an injective map Φ(x) = {φi (x)}i≥0

such that k(x , y) =
∑∞

i=0 φi (x)φi (y). If the set A := span{φi |i ≥ 0} is
an algebra, then k is universal.

Proof Continued: Let f ∈ C(X ) and ϵ > 0.

Since A is dense in C(X ), there exists g ∈ A s.t. ∥f − g∥∞ < ϵ.

By definition of A, the function g is of the form g(x)=⟨w ,Φ(x)⟩l2
with w = (wi )i≥0 s.t. wi = 0 for any i > N for some N <∞.

Hence, g belongs to the unique RKHS H of K . This shows that H
is dense in C(X ), hence K is universal.
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Criteria for Universality

Proposition

Let 0 < r ≤ ∞ and f : (−r , r)→ R be a C∞ function that admits an
expansion as a Taylor series in 0: f (x) =

∑∞
i=0 aix

i . Let X be a compact
set in the open centered ball in Rd of radius

√
r . If ai > 0 for all i ≥ 0,

then k(x , y) = f (⟨x , y⟩) defines a universal kernel on X .
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Criteria for Universality

Proposition

Let 0 < r ≤ ∞ and f : (−r , r)→ R be a C∞ function that admits an
expansion as a Taylor series in 0: f (x) =

∑∞
i=0 aix

i . Let X be a compact
set in the open centered ball in Rd of radius

√
r . If ai > 0 for all i ≥ 0,

then k(x , y) = f (⟨x , y⟩) defines a universal kernel on X .

Proof: For simplicity, take d = 1.

K is continuous and of the form:

K (x , y) :=
∞∑

i=0

aix
iy i = ⟨Φ(x),Φ(y)⟩l2

with Φ(x) = (
√
aix

i )i≥0 which is injective.

K (x , x)=
∑∞

i=0 aix
2i>0 since ai > 0 for all i ≥ 0.

A:=span({φn|n ≥ 0}) is the algebra of polynomials.

Hence K universal by the general criterion for universality.
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Criteria for Universality

Proposition (Steinwart 2001)

Let f : [0, 2π]→ R be a continuous function that can be expanded in a
pointwise absolutely convergent Fourier series: f (t)=

∑∞
n=0 ancos(nt).

If an > 0 for all n ≥ 0, then the Kernel K (x , y):=
∏d

i=1 f (|xi − yi |)
defines a universal kernel on every compact subset of [0, 2π)d .
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Proposition (Steinwart 2001)

Let f : [0, 2π]→ R be a continuous function that can be expanded in a
pointwise absolutely convergent Fourier series: f (t)=

∑∞
n=0 ancos(nt).

If an > 0 for all n ≥ 0, then the Kernel K (x , y):=
∏d

i=1 f (|xi − yi |)
defines a universal kernel on every compact subset of [0, 2π)d .

Proof: For simplicity, take d=1.

K is continuous and of the form:

K (x , y)=a0+
∞∑

n=0

an(sin(nx)sin(ny)+cos(nx)cos(ny)) = ⟨Φ(x),Φ(y)⟩l2

where Φ(x)=(φn(x))n≥0 defined by φ0(x) = a0, φ2n−1=
√
ansin(nx)

and φ2n(x) =
√
ancos(nx) for n ≥ 1 is injective.

K (x , x)=
∑∞

n=0 an>0 since an > 0 for all n ≥ 0.

A:=span({φn|n ≥ 0}) is an algebra (by trigonometric identities).

Hence K universal by the general criterion for universality.
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Summary: Characteristic kernels via Universality

On a compact metric set X , a universal kernel is a continuous kernel
whose RKHS (H) is dense in C(X ) in the maximum norm.

Any universal kernel on X is characteristic, i.e. the mean embedding
map P 7→ µP=EX∼P[KX ] ∈ H defined on the set P of probability
distributions on X is injective:

∀P,Q ∈ P : µP = µQ =⇒ P = Q.

Can construct a large class of universal kernels using Taylor series or
Fourier series with positive coefficients.

Both constructions follow from the General criterion for universality,
itself a consequence of Stone-Weierstrass theorem for compact
metric sets.

Question: What if X is not compact?
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Characteristic kernels via Fourier transform

Consider a translation invariant kernel K on Rd of the form
K (x , y)=κ(x − y) with κ : Rd → R.

Bochner’s theorem implies the existence of a finite non-negative
Borel measure Λ on Rd such that κ(z) =

∫
e−iz⊤wdΛ(w).

Can express K as a Hermitian product in L2(Λ) of Fourier features:

K (x , y) = ⟨Φ(x),Φ(y)⟩L2(Λ), w 7→ Φ(x)(w) = e−ix⊤w

Can express the mean embedding µP in terms of
F(P)=EX∼P[Φ(X )] the of Fourier transform of P:

µP(y) = EX∼P[⟨Φ(X ),Φ(y)⟩L2(Λ)] = ⟨F(P),Φ(y)⟩L2(Λ)
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Consider a translation invariant kernel K on Rd of the form
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Bochner’s theorem implies the existence of a finite non-negative
Borel measure Λ on Rd such that κ(z) =

∫
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Can express K as a Hermitian product in L2(Λ) of Fourier features:

K (x , y) = ⟨Φ(x),Φ(y)⟩L2(Λ), w 7→ Φ(x)(w) = e−ix⊤w

Can express the mean embedding µP in terms of
F(P)=EX∼P[Φ(X )] the of Fourier transform of P:

µP(y) = EX∼P[⟨Φ(X ),Φ(y)⟩L2(Λ)] = ⟨F(P),Φ(y)⟩L2(Λ)

Fourier inversion theorem (Dudley 2002, Theorem 9.5.4)

If P and Q are two probability distributions on Rd with the same Fourier
transform: F(P)=F(Q), then P=Q.
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Consider a translation invariant kernel K on Rd of the form
K (x , y)=κ(x − y) with κ : Rd → R.
Bochner’s theorem implies the existence of a finite non-negative
Borel measure Λ on Rd such that κ(z) =

∫
e−iz⊤wdΛ(w).

Can express K as a Hermitian product in L2(Λ) of Fourier features:

K (x , y) = ⟨Φ(x),Φ(y)⟩L2(Λ), w 7→ Φ(x)(w) = e−ix⊤w

Can express the mean embedding µP in terms of
F(P)=EX∼P[Φ(X )] the of Fourier transform of P:

µP(y) = EX∼P[⟨Φ(X ),Φ(y)⟩L2(Λ)] = ⟨F(P),Φ(y)⟩L2(Λ)

Fourier inversion theorem (Dudley 2002, Theorem 9.5.4)

If P and Q are two probability distributions on Rd with the same Fourier
transform: F(P)=F(Q), then P=Q.

The measure Λ must ”preserve information contained” in the Fourier
transform F(P). 608 / 785



Characteristic kernels via Fourier transform

Translation invariant characteristic kernels: (Sriperumbudur 2008)

Let K be a translation invariant kernel on Rd of the form
K (x , y)=κ(x − y) with κ(z) =

∫
e−iz⊤wdΛ(w) for some finite

non-negative Borel measure Λ on Rd . The kernel K is characteristic if
and only if supp (Λ) = Rd .
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Let K be a translation invariant kernel on Rd of the form
K (x , y)=κ(x − y) with κ(z) =

∫
e−iz⊤wdΛ(w) for some finite

non-negative Borel measure Λ on Rd . The kernel K is characteristic if
and only if supp (Λ) = Rd .

Example 1: Gaussian kernel K (x , y) = e−
σ2

2
∥x−y∥2 . The measure Λ is a

gaussian on Rd with density w 7→ (1/
√
2πσ2)de−

1
2σ2 ∥w∥2 . Since

supp(Λ) = Rd , K is characteristic.
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Characteristic kernels via Fourier transform

Translation invariant characteristic kernels: (Sriperumbudur 2008)

Let K be a translation invariant kernel on Rd of the form
K (x , y)=κ(x − y) with κ(z) =

∫
e−iz⊤wdΛ(w) for some finite

non-negative Borel measure Λ on Rd . The kernel K is characteristic if
and only if supp (Λ) = Rd .

Example 1: Gaussian kernel K (x , y) = e−
σ2

2
∥x−y∥2 . The measure Λ is a

gaussian on Rd with density w 7→ (1/
√
2πσ2)de−

1
2σ2 ∥w∥2 . Since

supp(Λ) = Rd , K is characteristic.
Example 2: Let κ(z) = z−1sin(z). Then K (x , y) = κ(x − y) is not
characteristic: Λ is the uniform distribution on the [−1, 1].
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Characteristic kernels: Summary

Definition

Let X be a topological set and P the set of Borel probability measures
on X . Consider a bounded measurable p.d. kernel K defined on X and
let H be its RKHS. The kernel K is said to be characteristic if the map
P ∋ P 7→ µP = EX∼P[KX ] ∈ H is injective, i.e.:

∀P,Q ∈ P : µP = µQ =⇒ P = Q.

Criteria for characteristic kernels

On a compact set X , can use criteria for universality: A kernel is
universal if it continuous and its RKHS is dense in C(X ).

If K admits a Taylor expansion with positive coefficients.
If K admits a Fourier expansion with positive coefficients.

If X = Rd and K is translation invariant with associated
non-negative measure Λ: K characteristic ⇐⇒ supp (Λ) = Rd
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Open Problems
and Research Topics
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Motivation

We have seen how to make learning algorithms given a kernel K on
some data space X
Often we may have several possible kernels:

by varying the kernel type or parameters on a given description of the
data (eg, linear, polynomial, Gaussian kernels with different
bandwidths...)
because we have different views of the same data, eg, a protein can
be characterized by its sequence, its structure, its mass spectrometry
profile...

How to choose or integrate different kernels in a learning task?
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Setting: learning with one kernel

For any f : X → R, let f n = (f (x1), . . . , f (xn)) ∈ Rn

Given a p.d. kernel K : X × X → R, we learn with K by solving:

min
f ∈H

R(f n) + λ∥ f ∥2H , (4)

where λ > 0 and R : Rn → R is an closed3 and convex empirical
risk:

R(u) = 1
n

∑n
i=1(ui − yi )

2 for kernel ridge regression
R(u) = 1

n

∑n
i=1 max(1− yiui , 0) for SVM

R(u) = 1
n

∑n
i=1 log (1 + exp (−yiui )) for kernel logistic regression

3R is closed if, for each A ∈ R, the sublevel set {u ∈ Rn : R(u) ≤ A} is closed. For
example, if R is continuous then it is closed.
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Sum kernel

Definition

Let K1, . . . ,KM be M kernels on X . The sum kernel KS is the kernel on
X defined as

∀x, x′ ∈ X , KS(x, x
′) =

M∑

i=1

Ki (x, x
′) .
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Sum kernel and vector concatenation

Theorem

For i = 1, . . . ,M, let Φi : X → Hi be a feature map such that

Ki (x, x
′) =

〈
Φi (x) ,Φi

(
x′
)〉

Hi
.

Then KS =
∑M

i=1 Ki can be written as:

KS(x, x
′) =

〈
ΦS (x) ,ΦS

(
x′
)〉

HS
,

where ΦS : X → HS = H1 ⊕ . . .⊕HM is the concatenation of the
feature maps Φi :

ΦS (x) = (Φ1 (x) , . . . ,ΦM (x))⊤ .

Therefore, summing kernels amounts to concatenating their feature space
representations, which is a quite natural way to integrate different
features.
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Proof

For ΦS (x) = (Φ1 (x) , . . . ,ΦM (x))⊤, we easily compute:

〈
ΦS (x) ,ΦS

(
x′
)〉

Hs
=

M∑

i=1

〈
Φi (x) ,Φi

(
x′
)〉

Hi

=
M∑

i=1

Ki (x, x
′)

= KS(x, x
′) .
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Example: data integration with the sum kernel
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ABSTRACT
Motivation:An increasing number of observations support the
hypothesis that most biological functions involve the interac-
tions between many proteins, and that the complexity of living
systems arises as a result of such interactions. In this context,
the problem of inferring a global protein network for a given
organism, using all available genomic data about the organ-
ism, is quickly becoming one of the main challenges in current
computational biology.
Results: This paper presents a new method to infer protein
networks from multiple types of genomic data. Based on a
variant of kernel canonical correlation analysis, its originality
is in the formalization of the protein network inference problem
as a supervised learning problem, and in the integration of het-
erogeneous genomic data within this framework. We present
promising results on the prediction of the protein network for
the yeast Saccharomyces cerevisiae from four types of widely
available data: gene expressions, protein interactions meas-
ured by yeast two-hybrid systems, protein localizations in the
cell and protein phylogenetic profiles. The method is shown
to outperform other unsupervised protein network inference
methods. We finally conduct a comprehensive prediction of
the protein network for all proteins of the yeast, which enables
us to propose protein candidates for missing enzymes in a
biosynthesis pathway.
Availability: Softwares are available upon request.
Contact yoshi@kuicr.kyoto-u.ac.jp

INTRODUCTION
An increasing number of observations support the hypothesis
thatmost biological functions involve the interactions between
manyproteins, and that the complexity of living systems arises
as a result of such interactions. In this context, the problem
of inferring a global protein network for a given organism,
using all available genomic data about the organism, is quickly
becoming one of the main challenges addressed in current

∗To whom correspondence should be addressed.

computational biology. By protein network we mean, in this
paper, a graph with proteins as vertices and edges that corres-
pond to various binary relationships between proteins. More
precisely, we consider below the protein network with edges
between two proteins if (i) the proteins interact physically,
or (ii) the proteins are enzymes that catalyze two successive
chemical reactions in a pathway or (iii) one of the proteins
regulates the expression of the other. This definition of pro-
tein network involves various forms of interactions between
proteins, which should be taken into account for the study of
the behavior of biological systems.
Unfortunately, the experimental determination of this pro-

tein network remains very challenging nowadays, even for
the most basic organisms. The lack of reliable informa-
tion contrasts with the wealth of genomic data generated by
high-throughput technologies such as gene expression data
(Eisen et al., 1998), physical protein interactions (Ito et al.,
2001), protein localization (Huh et al., 2003), phylogen-
etic profiles (Pellegrini et al., 1999) or pathway knowledge
(Kanehisa et al., 2004). There is therefore an incentive
to develop methods to predict the protein network from
such data.
A variety of computational methods for this problem have

been investigated so far. Some methods perform the protein
network inference from a single type of genomic data, such
as Bayesian networks (Friedman et al., 2000) and Boolean
networks (Akutsu et al., 2000), which aim at inferring gene
regulation networks from gene expression data, or the mirror
tree method (Pazos et al., 2001), which predicts protein inter-
actions from evolutionary similarities. Other methods com-
bine different sources of data to infer the network: this is for
example, the case in the joint graph method (Marcotte et al.,
1999), where graphs representing similarities with respect to
various types of genomic information are overlapped in order
to detect strong associations between proteins.
These methods share the particularity of being unsuper-

vised, in the sense that the whole protein network is inferred
from the data. Inference typically relies on the assumption
that proteins sharing similarity according to a dataset (e.g.
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Equation (2) with decreasing eigenvalue ρ. This problem is
usually called kernel canonical correlation analysis (CCA)
(Akaho, 2001). If one now focuses on the first L solutions
α

(1)
1 , . . . ,α

(L)
1 of Equation (2) (sorted by decreasing value of

ρ), then they define L features of interest by f (l) = K1α
(l)
1 ,

for l = 1, . . . ,L. These features are built from the genomic
dataset kernel K1 only, and are expected to fit the ideal fea-
tures on the gold standard set of proteins. These features
can now be generalized to any protein x by the following
equation:

f (l) (x) =
n∑

k=1
α

(l)
1 (xk) K (xk , x) . (3)

This is the set of features we propose to map the proteins to
before inferring protein interactions.
In both the spectral method and this supervised

method, each protein x is mapped to a feature space
as an L-dimensional vector u = (u1, . . . , uL)! =
[f (1)(x), . . . , f (L)(x)]!. To assess the similarity of protein x
and protein y in this feature space, we simply follow the spirit
of the direct approach and quantify the similarity between
points u = (u1, . . . , uL)! and v = (v1, . . . , vL)! by their
correlation:

ĉorr (u, v) = ĉov(u, v)
√
v̂ar(u)

√
v̂ar(v)

= (1/L)
∑L

l=1 (ul − ū) (vl − v̄)
√

(1/L)
∑L

l=1(ul − ū)2
√

(1/L)
∑L

l=1(vl − v̄)2
,

(4)

where ū and v̄ are the averages of u and v.

RESULTS
All genomic datasets are transformed into kernels as fol-
lows. The gold standard protein network and the noisy protein
interaction datasets are represented by a diffusion kernel
with parameter β = 1, and respectively denoted Kgold and
Kppi. For the gene expression data, we used the Gaussian
RBF kernel with σ = 5, and denote the resulting kernel
Kexp. For both localization data and the phylogenetic pro-
files, a simple linear kernel, is denoted respectively Kloc
and Kphy. All kernels are then normalized to 1 on the diag-
onal and centered in the feature space (Schölkopf and Smola,
2002).
We tested the direct and spectral approaches either on single

types of genomic datasets, or on the integrated kernel repres-
enting all datasets. For the spectral approach, we arbitrarily
kept the first L = 50 principal components to define the fea-
ture space. The accuracy of both methods is assessed on the
gold standard dataset, by their capacity to recover the pro-
tein network. Starting from isolated nodes, each method can

Table 1. List of experiments of direct approach, spectral approach based on
kernel PCA, and supervised approach based on kernel CCA

Approach Kernel (Predictor) Kernel (Target)

Direct Kexp (Expression)
Kppi (Protein interaction)
Kloc (Localization)
Kphy (Phylogenetic profile)
Kexp + Kppi + Kloc + Kphy
(Integration)

Spectral Kexp (Expression)
Kppi (Protein interaction)
Kloc (Localization)
Kphy (Phylogenetic profile)
Kexp + Kppi + Kloc + Kphy
(Integration)

Supervised Kexp (Expression) Kgold (Protein network)
Kppi (Protein interaction) Kgold (Protein network)
Kloc (Localization) Kgold (Protein network)
Kphy (Phylogenetic profile) Kgold (Protein network)
Kexp + Kppi + Kloc + Kphy Kgold (Protein network)
(Integration)

be used to build progressively a network by adding edges
between pairs of proteins sorted by decreasing similarity. At
each addition, we recorded the number of true positives (pre-
dicted edges that indeed are present in the gold standard) and
false positives (predicted edges that are absent from the gold
standard). Figures 3 and 4 show the ROC curves representing
the numbers of true positives as a function of the number of
false positives for the two methods. In both cases, the over-
all accuracy of the inference method is very limited. Little
information seems to be caught by the direct approach, while
the spectral approach gives slightly better results, in particular,
when used in combination with the kernel that integrates all
genomic datasets, but remains useless in practice due to the
large rate of false positives at any rate of true positives. These
negative results, in particular for the direct approach, confirm
that the problem of protein network reconstruction is far from
trivial.
We then tested the supervised approach. The parameters λ1

and λ2 were set to 0.1, and again we kept L = 50 features
to define the feature space. We tested various combinations
of dataset kernels to be fitted to the gold standard kernel, as
described in Table 1. In order to assess the accuracy of the
method, we carried out a 10-fold cross-validation experiment
as follows. In each out of 10 iterations, the set of 769 proteins
in the gold standard is split into a training set and a test set in
the proportion 9/1. The feature space is trained on the train-
ing set, and the inference of interaction is performed on the
possible interactions involving the proteins in the test set (the
gray part in Fig. 1). Once again a graph is built progressively
and we record the number of true positive interactions as a
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Fig. 5. ROC curves: supervised approach.

enables us to make new biological inferences for unknown
protein–protein interactions.
This method is a supervised approach, while most meth-

ods which have been proposed so far are unsupervised. The
motivation to use a supervised approach is to explicitly learn
the correlation between known networks and genomic data in
the algorithm. It should be pointed out that in this supervised
framework, different networks can be inferred from the same
data, by changing the partial network used in the learning step.
Another strength of this method is the possibility to naturally
integrate heterogeneous data. Experimental results confirmed
that this integration is beneficial for the prediction accuracy
of the method. Moreover, other sorts of genomic data can
be integrated, as long as kernels can be derived from them.
As the list of kernels for genomic data keeps increasing fast
(Schölkopf et al., 2004), new opportunities might be worth
investigating.
A drawback of our method is that in its current form, it is

limited to the prediction of undirected interactions between
proteins, which might be insufficient for example in the case
of gene regulatory networks. The incorporation of directional
information is a topic we are currently investigating, through
which we expect to bring about more biologically interesting
findings.
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The sum kernel: functional point of view

Theorem

The solution f ∗ ∈ HKS
when we learn with KS =

∑M
i=1 Ki is equal to:

f ∗ =
M∑

i=1

f ∗i ,

where (f ∗1 , . . . , f
∗
M) ∈ HK1 × . . .×HKM

is the solution of:

min
f1,...,fM

R

(
M∑

i=1

f ni

)
+ λ

M∑

i=1

∥ fi ∥2HKi
.
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Generalization: The weighted sum kernel

Theorem

The solution f ∗ when we learn with Kη =
∑M

i=1 ηiKi , with
η1, . . . , ηM ≥ 0, is equal to:

f ∗ =
M∑

i=1

f ∗i ,

where (f ∗1 , . . . , f
∗
M) ∈ HK1 × . . .×HKM

is the solution of:

min
f1,...,fM

R

(
M∑

i=1

f ni

)
+ λ

M∑

i=1

∥ fi ∥2HKi

ηi
.
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Proof (1/4)

min
f1,...,fM

R

(
M∑

i=1

f ni

)
+ λ

M∑

i=1

∥ fi ∥2HKi

ηi
.

R being convex, the problem is strictly convex and has a unique
solution (f ∗1 , . . . , f

∗
M) ∈ HK1 × . . .×HKM

.

By the representer theorem, there exists α∗
1, . . . ,α

∗
M ∈ Rn such that

f ∗i (x) =
n∑

j=1

α∗
ijKi (xj , x) .

(α∗
1, . . . ,α

∗
M) is the solution of

min
α1,...,αM∈Rn

R

(
M∑

i=1

Kiαi

)
+ λ

M∑

i=1

α⊤
i Kiαi

ηi
.
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Proof (2/4)

This is equivalent to

min
u,α1,...,αM∈Rn

R (u) + λ

M∑

i=1

α⊤
i Kiαi

ηi
s.t. u =

M∑

i=1

Kiαi .

This is equivalent to the saddle point problem:

min
u,α1,...,αM∈Rn

max
γ∈Rn

R (u) + λ

M∑

i=1

α⊤
i Kiαi

ηi
+ 2λγ⊤(u−

M∑

i=1

Kiαi ) .

By Slater’s condition, strong duality holds, meaning we can invert
min and max:

max
γ∈Rn

min
u,α1,...,αM∈Rn

R (u) + λ
M∑

i=1

α⊤
i Kiαi

ηi
+ 2λγ⊤(u−

M∑

i=1

Kiαi ) .
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Proof (3/4)

Minimization in u:

min
u

R(u) + 2λγ⊤u = −max
u

{
−2λγ⊤u− R(u)

}
= −R∗(−2λγ) ,

where R∗ is the Fenchel dual of R:

∀v ∈ Rn R∗(v) = sup
u∈Rn

u⊤v − R(u) .

Minimization in αi for i = 1, . . . ,M:

min
αi

{
λ
α⊤

i Kiαi

ηi
− 2λγ⊤Kiαi

}
= −ληiγ⊤Kiγ ,

where the minimum in αi is reached for α∗
i = ηiγ.
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Proof (4/4)

The dual problem is therefore

max
γ∈Rn

{
−R∗(−2λγ)− λγ⊤

(
M∑

i=1

ηiKi

)
γ

}
.

Note that if learn from a single kernel Kη, we get the same dual
problem

max
γ∈Rn

{
−R∗(−2λγ)− λγ⊤Kηγ

}
.

If γ∗ is a solution of the dual problem, then α∗
i = ηiγ

∗ leading to:

∀x ∈ X , f ∗i (x) =
n∑

j=1

α∗
ijKi (xj , x) =

n∑

j=1

ηiγ
∗
j Ki (xj , x)

Therefore, f ∗ =
∑M

i=1 f
∗
i satisfies

f ∗ (x) =
M∑

i=1

n∑

j=1

ηiγ
∗
j Ki (xj , x) =

n∑

j=1

γ∗j Kη (xj , x) . □
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Learning the kernel

Motivation

If we know how to weight each kernel, then we can learn with the
weighted kernel

Kη =
M∑

i=1

ηiKi

However, usually we don’t know...

Perhaps we can optimize the weights ηi during learning?
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An objective function for K

Theorem

For any p.d. kernel K on X , let

J(K ) = min
f ∈H

{
R(f n) + λ∥ f ∥2H

}
.

The function K 7→ J(K ) is convex.

This suggests a principled way to ”learn” a kernel: define a convex set of
candidate kernels, and minimize J(K ) by convex optimization.
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Proof

We have shown by strong duality that

J(K ) = max
γ∈Rn

{
−R∗(−2λγ)− λγ⊤Kγ

}
.

For each γ fixed, this is an affine function of K , hence convex

A supremum of convex functions is convex. □
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MKL (Lanckriet et al., 2004)

We consider the set of convex combinations

Kη =
M∑

i=1

ηiKi with η ∈ ΣM =

{
ηi ≥ 0 ,

M∑

i=1

ηi = 1

}

We optimize both η and f ∗ by solving:

min
η∈ΣM

J (Kη) = min
η∈ΣM

min
f ∈HKη

{
R(f n) + λ∥ f ∥2HKη

}

The problem is jointly convex in (η,α) and can be solved efficiently.

The output is both a set of weights η, and a predictor corresponding
to the kernel method trained with kernel Kη.

This method is usually called Multiple Kernel Learning (MKL).
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Example: protein annotation
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ABSTRACT
Motivation: During the past decade, the new focus on
genomics has highlighted a particular challenge: to integrate
the different views of the genome that are provided by various
types of experimental data.
Results: This paper describes a computational framework
for integrating and drawing inferences from a collection of
genome-wide measurements. Each dataset is represented via
a kernel function, which defines generalized similarity relation-
ships between pairs of entities, such as genes or proteins.The
kernel representation is both flexible and efficient, and can be
applied to many different types of data. Furthermore, kernel
functions derived from different types of data can be combined
in a straightforward fashion. Recent advances in the theory
of kernel methods have provided efficient algorithms to per-
form such combinations in a way that minimizes a statistical
loss function. These methods exploit semidefinite program-
ming techniques to reduce the problem of finding optimiz-
ing kernel combinations to a convex optimization problem.
Computational experiments performed using yeast genome-
wide datasets, including amino acid sequences, hydropathy
profiles, gene expression data and known protein–protein
interactions, demonstrate the utility of this approach. A stat-
istical learning algorithm trained from all of these data to
recognize particular classes of proteins—membrane proteins
and ribosomal proteins—performs significantly better than the
same algorithm trained on any single type of data.
Availability:Supplementary data at http://noble.gs.washington.
edu/proj/sdp-svm
Contact: noble@gs.washington.edu

INTRODUCTION
The recent availability of multiple types of genome-wide data
provides biologistswith complementary views of a single gen-
omeandhighlights the need for algorithms capable of unifying

∗To whom correspondence should be addressed at: Health Sciences Center,
Box 357730, 1705 NE Pacific Street, Seattle, WA 98195, USA.

these views. In yeast, for example for a given gene we typ-
ically know the protein it encodes, that protein’s similarity to
other proteins, its hydrophobicity profile, the mRNA expres-
sion levels associated with the given gene under hundreds of
experimental conditions, the occurrences of known or inferred
transcription factor binding sites in the upstream region of
that gene and the identities ofmany of the proteins that interact
with the given gene’s protein product. Each of these distinct
data types provides one view of the molecular machinery of
the cell. In the near future, research in bioinformatics will
focus more and more heavily on methods of data fusion.
Different data sources are likely to contain different and

thus partly independent information about the task at hand.
Combining those complementary pieces of information can be
expected to enhance the total information about the problem at
hand. One problem with this approach, however, is that gen-
omic data come in a wide variety of data formats: expression
data are expressed as vectors or time series; protein sequence
data as strings from a 20-symbol alphabet; gene sequences are
strings from a different (4-symbol) alphabet; protein–protein
interactions are best expressed as graphs and so on.
This paper presents a computational and statistical frame-

work for integrating heterogeneous descriptions of the same
set of genes. The approach relies on the use of kernel-based
statistical learningmethods that have already proven to be very
useful tools in bioinformatics (Noble, 2004). These methods
represent the data bymeans of a kernel function, which defines
similarities between pairs of genes, proteins and so on. Such
similarities can be quite complex relations, implicitly cap-
turing aspects of the underlying biological machinery. One
reason for the success of kernel methods is that the kernel
function takes relationships that are implicit in the data and
makes them explicit, so that it is easier to detect patterns. Each
kernel function thus extracts a specific type of information
from a given dataset, thereby providing a partial description
or view of the data. Our goal is to find a kernel that best
represents all the information available for a given statistical
learning task. Given many partial descriptions of the data, we
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Table 1. Kernel functions

Kernel Data Similarity measure

KSW protein sequences Smith-Waterman
KB protein sequences BLAST
KPfam protein sequences Pfam HMM
KFFT hydropathy profile FFT
KLI protein interactions linear kernel
KD protein interactions diffusion kernel
KE gene expression radial basis kernel
KRND random numbers linear kernel

The table lists the seven kernels used to compare proteins, the data on which they are
defined, and the method for computing similarities. The final kernel, KRND, is included
as a control. All kernel matrices, along with the data from which they were generated,
are available at noble.gs.washington.edu/proj/sdp-svm.

the membrane, and similarly for the ribosome. Therefore,
we define three kernel matrices based upon standard homo-
logy detection methods. The first two sequence-based kernel
matrices (KSW and KB) are generated using the BLAST
(Altschul et al., 1990) and Smith–Waterman (SW) (Smith and
Waterman, 1981) pairwise sequence comparison algorithms,
as described previously (Liao and Noble, 2002). Both
algorithms use gap opening and extension penalties of 11 and
1, and the BLOSUM 62 matrix. As matrices of BLAST or
Smith–Waterman scores are not necessarily positive semidef-
inite, we represent each protein as a vector of scores against all
other proteins. Defining the similarity between proteins as the
inner product between the score vectors (the so-called empir-
ical kernel map, Tsuda 1999) leads to valid kernel matrices,
one for the BLAST score and one for the SW score. Note that
including in the comparison set proteins with unknown labels
allows the kernel to exploit this unlabeled data. The third ker-
nel matrix (KPfam) is a generalization of the previous pairwise
comparison-based matrices in which the pairwise comparison
scores are replaced by expectation values derived from hidden
Markov models (HMMs) in the Pfam database (Sonnhammer
et al., 1997).

Fast Fourier Transform (FFT) kernel The fourth sequence-
based kernelmatrix (KFFT) is specific to themembrane protein
recognition task. This kernel directly incorporates information
about hydrophobicity patterns, which are known to be useful
in identifying membrane proteins. Generally, each mem-
brane protein passes through themembrane several times. The
transmembrane regions of the amino acid sequence are typ-
ically hydrophobic, whereas the non-membrane portions are
hydrophilic. This specific hydrophobicity profile of the pro-
tein allows it to anchor itself in the cell membrane. Because
the hydrophobicity profile of a membrane protein is critical
to its function, this profile is better conserved in evolution
than the specific amino acid sequence. Therefore, classical
methods for determining whether a protein pi (consisting of
|pi | amino acids) spans a membrane (Chen and Rost, 2002),

depend upon its hydropathy profile h(pi ) ∈ R|pi |: a vector
containing the hydrophobicities of the amino acids along the
protein (Engleman et al., 1986; Black andMould, 1991; Hopp
and Woods, 1981). The FFT kernel uses hydropathy profiles
generated from the Kyte–Doolittle index (Kyte and Doolittle,
1982). This kernel compares the frequency content of the
hydropathy profiles of the two proteins. First, the hydropathy
profiles are pre-filtered with a low-pass filter to reduce noise:

hf (pi ) = f ⊗ h(pi ),

where f = 1
4 (1 2 1) is the impulse response of the filter

and ⊗ denotes convolution with that filter. After pre-filtering
the hydropathy profiles (and if necessary appending zeros to
make them equal in length—a commonly used technique not
altering the frequency content), their frequency contents are
computed with the FFT algorithm:

Hf (pi ) = FFT[hf (pi )].

The FFT kernel between proteinspi andpj is then obtained by
applying a Gaussian kernel function to the frequency contents
of their hydropathy profiles:

KFFT(pi ,pj ) = exp[−‖Hf (pi ) − Hf (pj )‖2/2σ ]

with width σ = 10. This kernel detects periodicities in the
hydropathy profile, a feature that is relevant to the identifica-
tionofmembraneproteins and complementary to the previous,
homology-based kernels.

Protein interactions: linear and diffusion kernels For the
recognition of ribosomal proteins, protein–protein interac-
tions are clearly informative, since all ribosomal proteins
interact with other ribosomal proteins. For membrane pro-
tein recognition, we expect information about protein–protein
interactions to be informative for two reasons. First, hydro-
phobic molecules or regions of molecules are probably more
likely to interact with each other than with hydrophilic
molecules or regions. Second, transmembrane proteins are
often involved in signaling pathways, and therefore, differ-
ent membrane proteins are likely to interact with a similar
class of molecules upstream and downstream in these path-
ways (e.g. hormones upstream or kinases downstream). The
two protein interaction kernels are generated using medium-
and high-confidence interactions from a database of known
interactions (von Mering et al., 2002). These interactions can
be represented as an interaction matrix, in which rows and
columns correspond to proteins, and binary entries indicate
whether the two proteins interact.
The first interaction kernel matrix (KLI) is comprised of

linear interactions, i.e. inner products of rows and columns
from the centered, binary interactionmatrix. Themore similar
the interaction pattern (corresponding to a rowor column from
the interaction matrix) for a pair of proteins, the larger the
inner product will be.
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Fig. 1. Combining datasets yields better classification performance. The height of the bars in the upper two plots are proportional to the ROC
score (top) and the percentage of true positives at one percent false positives (middle), for the SDP/SVM method using the given kernel. Error
bars indicate standard error across 30 random train/test splits. In the lower plots, the heights of the colored bars indicate the relative weights
of the different kernel matrices in the optimal linear combination. These results in tabular form, along with percent accuracy measurements,
are given in the online supplement.

hydrophobicity, normalized by the length of the protein. We
will compare the classification performance of our statistical
learning algorithm with this metric.

However, clearly, f1 is too simplistic. For example, protein
regions that are not transmembrane only induce noise in f1.
Therefore, an alternative metric filters the hydrophobicity plot
with a low-pass filter and then computes the number, the height
and the width of those peaks above a certain threshold (Chen
and Rost, 2002). The filter is intended to smooth out periodic
effects. We implement two such filters, choosing values for the
filter order and the threshold based on Chen and Rost (2002).
In particular, we define f2 as the area under the 7th-order
low-pass filtered Kyte–Doolittle plot and above a threshold
value 2, normalized by the length of the protein. Similarly,
f3 is the corresponding area using a 20th-order filter and a
threshold of 1.6.

Finally, the transmembrane HMM (TMHMM) Web server
(www.cbs.dtu.dk/services/TMHMM) is used to make predic-
tions for each protein. In Krogh et al. (2001), transmembrane
proteins are identified by TMHMM using three different met-
rics: the expected number of amino acids in transmembrane
helices, the number of transmembrane helices predicted by
the N -best algorithm, and the expected number of transmem-
brane helices. Only the first two of these metrics are provided
in the TMHMM output. Accordingly, we produce two lists
of proteins, ranked by the number of predicted transmem-
brane helices (TPH) and by the expected number of residues
in transmembrane helices (TENR).

Each algorithm’s performance is measured by randomly
splitting the data (without stratifying) into a training and
test set in a ratio of 80/20. We report the receiver operating

characteristic (ROC) score, which is the area under a curve that
plots true positive rate as a function of false positive rate for
differing classification thresholds (Hanley and McNeil, 1982;
Gribskov and Robinson, 1996). The ROC score measures the
overall quality of the ranking induced by the classifier, rather
than the quality of a single point in that ranking. An ROC
score of 0.5 corresponds to random guessing, and an ROC
score of 1.0 implies that the algorithm succeeded in putting
all of the positive examples before all of the negatives. In
addition, we select the point on the ROC curve that yields a
1% false positive rate, and we report the rate of true positives
at this point (TP1FP). Each experiment is repeated 30 times
with different random splits in order to estimate the variance
of the performance values.

RESULTS
We performed computational experiments that study the per-
formance of the SDP/SVM approach as a function of the
number of data sources, compare the approach to a simpler
approach using an unweighted combination of kernels, study
the robustness of the method to the presence of noise, and for
membrane protein classification, compare the performance of
the method to classical biological methods and state-of-the-art
techniques for membrane protein classification.

Ribosomal protein classification
Figure 1A shows the results of training an SVM to recognize
the cytoplasmic ribosomal proteins, using various kernel func-
tions. Very good recognition performance can be achieved
using several types of data individually: the Smith–Waterman
kernel yields an ROC of 0.9903 and a TP1FP of 86.23%,
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Example: Image classification (Harchaoui and Bach, 2007)

COREL14 dataset

1400 natural images in 14 classes

Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination by
MKL (M).
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MKL revisited (Bach et al., 2004)

Kη =
M∑

i=1

ηiKi with η ∈ ΣM =

{
ηi ≥ 0 ,

M∑

i=1

ηi = 1

}

Theorem

The solution f ∗ of

min
η∈ΣM

min
f ∈HKη

{
R(f n) + λ∥ f ∥2HKη

}

is f ∗ =
∑M

i=1 f
∗
i , where (f ∗1 , . . . , f

∗
M) ∈ HK1 × . . .×HKM

is the solution
of:

min
f1,...,fM



R

(
M∑

i=1

f ni

)
+ λ

(
M∑

i=1

∥ fi ∥HKi

)2


 .
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Proof (1/2)

min
η∈ΣM

min
f ∈HKη

{
R(f n) + λ∥ f ∥2HKη

}

= min
η∈ΣM

min
f1,...,fM

{
R

(
M∑

i=1

f ni

)
+ λ

M∑

i=1

∥ fi ∥2HKi

ηi

}

= min
f1,...,fM

{
R

(
M∑

i=1

f ni

)
+ λ min

η∈ΣM

{
M∑

i=1

∥ fi ∥2HKi

ηi

}}

= min
f1,...,fM



R

(
M∑

i=1

f ni

)
+ λ

(
M∑

i=1

∥ fi ∥HKi

)2


 ,
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Proof (2/2)

where the last equality results from:

∀a ∈ RM
+ ,

(
M∑

i=1

ai

)2

= inf
η∈ΣM

M∑

i=1

a2i
ηi
,

which is a direct consequence of the Cauchy-Schwarz inequality:

M∑

i=1

ai =
M∑

i=1

ai√
ηi
×√ηi ≤

(
M∑

i=1

a2i
ηi

) 1
2
(

M∑

i=1

ηi

) 1
2

.
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Algorithm: simpleMKL (Rakotomamonjy et al., 2008)

We want to minimize in η ∈ ΣM :

min
η∈ΣM

J (Kη) = min
η∈ΣM

max
γ∈Rn

{
−R∗(−2λγ)− λγ⊤Kηγ

}
.

For a fixed η ∈ ΣM , we can compute f (η) = J (Kη) by using a
standard solver for a single kernel to find γ∗:

J (Kη) = −R∗(−2λγ∗)− λγ∗⊤Kηγ
∗ .

From γ∗ we can also compute the gradient of J (Kη) with respect to
η:

∂J (Kη)

∂ηi
= −λγ∗⊤Kiγ

∗ .

J (Kη) can then be minimized on ΣM by a projected gradient or
reduced gradient algorithm.
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Sum kernel vs MKL

Learning with the sum kernel (uniform combination) solves

min
f1,...,fM

{
R

(
M∑

i=1

f ni

)
+ λ

M∑

i=1

∥ fi ∥2HKi

}
.

Learning with MKL (best convex combination) solves

min
f1,...,fM



R

(
M∑

i=1

f ni

)
+ λ

(
M∑

i=1

∥ fi ∥HKi

)2


 .

Although MKL can be thought of as optimizing a convex
combination of kernels, it is more correct to think of it as a
penalized risk minimization estimator with the group lasso penalty:

Ω(f ) = min
f1+...+fM=f

M∑

i=1

∥ fi ∥HKi
.
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Example: ridge vs LASSO regression

Take X = Rd , and for x = (x1, . . . , xd)
⊤ consider the rank-1 kernels:

∀i = 1, . . . , d , Ki

(
x, x′

)
= xix

′
i .

A function fi ∈ HKi
has the form fi (x) = βixi , with ∥ fi ∥HKi

= |βi |
The sum kernel is KS (x, x

′) =
∑d

i=1 xix
′
i = x⊤x, a function HKS

is
of the form f (x) = β⊤x, with norm ∥ f ∥HKS

= ∥β ∥Rd .

Learning with the sum kernel solves a ridge regression problem:

min
β∈Rd

{
R(Xβ) + λ

d∑

i=1

β2i

}
.

Learning with MKL solves a LASSO regression problem:

min
β∈Rd



R(Xβ) + λ

(
d∑

i=1

|βi |
)2


 .
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Extensions (Micchelli et al., 2005)

For r > 0 , Kη =
M∑

i=1

ηiKi with η ∈ Σr
M =

{
ηi ≥ 0 ,

M∑

i=1

ηri = 1

}

Theorem

The solution f ∗ of

min
η∈Σr

M

min
f ∈HKη

{
R(f n) + λ∥ f ∥2HKη

}

is f ∗ =
∑M

i=1 f
∗
i , where (f ∗1 , . . . , f

∗
M) ∈ HK1 × . . .×HKM

is the solution
of:

min
f1,...,fM



R

(
M∑

i=1

f ni

)
+ λ

(
M∑

i=1

∥ fi ∥
2r
r+1

HKi

) r+1
r



 .
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Motivation

Main problem

All methods we have seen require computing the n × n Gram matrix,
which is infeasible when n is significantly greater than 100 000 both in
terms of memory and computation.

Solutions

low-rank approximation of the kernel;

random Fourier features.

The goal is to find an approximate embedding ψ : X → Rd such that

K (x, x′) ≈ ⟨ψ(x), ψ(x′)⟩Rd .

and use large-scale optimization techniques dedicated to linear models!
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Motivation

Then, functions f in H may be approximated by linear ones in Rd , e.g.,.

f (x) =
n∑

i=1

αiK (xi , x) ≈
〈

n∑

i=1

αiψ(xi ), ψ(x)

〉

Rd

= ⟨w, ψ(x)⟩Rd .

Then, the ERM problem

min
f ∈H

1

n

n∑

i=1

L(yi , f (xi )) + λ∥f ∥2H,

becomes, approximately,

min
w∈Rd

1

n

n∑

i=1

L(yi ,w
⊤ψ(xi )) + λ∥w∥22,

which we know how to solve when n is large.
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Interlude: Large-scale learning with linear models

Let us study for a while optimization techniques for minimizing large
sums of functions

min
w∈Rd

1

n

n∑

i=1

fi (w).

Good candidates are

stochastic optimization techniques;

randomized incremental optimization techniques;

We will see a couple of such algorithms with their convergence rates and
start with the (batch) gradient descent method.
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Introduction of a few optimization principles

Why do we care about convexity?

Local observations give information about the global optimum

w

f(w)

w⋆

b

b

b

∇f (w) = 0 is a necessary and sufficient optimality condition for
differentiable convex functions;

it is often easy to upper-bound f (w)− f ⋆.
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b
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Introduction of a few optimization principles
An important inequality for smooth convex functions

If f is convex

w⋆

w

f(w)

b

b

b

b
w0

f (w) ≥ f (w0) +∇f (w0)⊤(w −w0)︸ ︷︷ ︸
linear approximation

;

this is an equivalent definition of convexity for smooth functions.
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Introduction of a few optimization principles
An important inequality for smooth functions

If ∇f is L-Lipschitz continuous (f does not need to be convex)

w⋆

w

f(w)g(w)

b

b

b

bb

b

w0w1

f (w) ≤ g(w) = f (w0) +∇f (w0)⊤(w −w0) + L
2∥w −w0∥22;

g(w) = Cw0 + L
2∥w0 − (1/L)∇f (w0)−w∥22.

646 / 785



Introduction of a few optimization principles
An important inequality for smooth functions

If ∇f is L-Lipschitz continuous (f does not need to be convex)

w⋆

w

f(w)g(w)

b

b

b

bb

b

w0w1

f (w) ≤ g(w) = f (w0) +∇f (w0)⊤(w −w0) + L
2∥w −w0∥22;

w1 = w0 − 1
L∇f (w0) (gradient descent step).
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Introduction of a few optimization principles
Gradient Descent Algorithm

Assume that f is convex and differentiable, and that ∇f is L-Lipschitz.

Theorem

Consider the algorithm

wt ← wt−1 − 1
L∇f (wt−1).

Then,

f (wt)− f ⋆ ≤ L∥w0 −w⋆∥22
2t

.

Remarks

the convergence rate improves under additional assumptions on f
(strong convexity);

some variants have a O(1/t2) convergence rate (Nesterov, 2004).

647 / 785



Proof (1/2)
Proof of the main inequality for smooth functions

We want to show that for all w and z,

f (w) ≤ f (z) +∇f (z)⊤(w − z) +
L

2
∥w − z∥22.

By using Taylor’s theorem with integral form,

f (w)− f (z) =

∫ 1

0

∇f (tw + (1− t)z)⊤(w − z)dt.

Then,

f (w)−f (z)−∇f (z)⊤(w−z) ≤
∫ 1

0

(∇f (tw+(1−t)z)−∇f (z))⊤(w−z)dt

≤
∫ 1

0

|(∇f (tw+(1−t)z)−∇f (z))⊤(w−z)|dt

≤
∫ 1

0

∥∇f (tw+(1−t)z)−∇f (z)∥2∥w−z∥2dt (C.-S.)

≤
∫ 1

0

Lt∥w−z∥22dt =
L

2
∥w−z∥22.
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Proof (2/2)
Proof of the theorem

We have shown that for all w,

f (w) ≤ gt(w) = f (wt−1) +∇f (wt−1)⊤(w − wt−1) +
L

2
∥w − wt−1∥22.

gt is minimized by wt ; it can be rewritten gt(w) = gt(w
t) + L

2
∥w − wt∥22. Then,

f (wt) ≤ gt(w
t) = gt(w

⋆)− L

2
∥w⋆ − wt∥22

= f (wt−1) +∇f (wt−1)⊤(w⋆ − wt−1) +
L

2
∥w⋆ − wt−1∥22 −

L

2
∥w⋆ − wt∥22

≤ f ⋆ +
L

2
∥w⋆ − wt−1∥22 −

L

2
∥w⋆ − wt∥22.

By summing from t = 1 to T , we have a telescopic sum

T (f (wT )− f ⋆) ≤
T∑
t=1

f (wt)− f ⋆ ≤ L

2
∥w⋆ − w0∥22 −

L

2
∥w⋆ − wT∥22.
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Introduction of a few optimization principles
An important inequality for smooth and µ-strongly convex functions

If ∇f is L-Lipschitz continuous and f µ-strongly convex

w⋆

w

f(w)

b

b

b

b
w0

f (w) ≤ f (w0) +∇f (w0)⊤(w −w0) + L
2∥w −w0∥22;

f (w) ≥ f (w0) +∇f (w0)⊤(w −w0) + µ
2∥w −w0∥22;
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Introduction of a few optimization principles

Proposition

When f is µ-strongly convex, differentiable and ∇f is L-Lipschitz, the
gradient descent algorithm with step-size 1/L produces iterates such that

f (wt)− f ⋆ ≤
(
1− µ

L

)t L∥w0 −w⋆∥22
2

.

We call that a linear convergence rate.
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Proof

We start from an inequality from the previous proof

f (wt) ≤ f (wt−1) +∇f (wt−1)⊤(w⋆ − wt−1) +
L

2
∥w⋆ − wt−1∥22 −

L

2
∥w⋆ − wt∥22

≤ f ⋆ +
L− µ

2
∥w⋆ − wt−1∥22 −

L

2
∥w⋆ − wt∥22.

In addition, we have that f (wt) ≥ f ⋆ + µ
2
∥wt − w⋆∥22, and thus

∥w⋆ − wt∥22 ≤
L− µ

L+ µ
∥w⋆ − wt−1∥22

≤
(
1− µ

L

)
∥w⋆ − wt−1∥22.

Finally,

f (wt)− f ⋆ ≤ L

2
∥wt − w⋆∥22

≤
(
1− µ

L

)t L∥w⋆ − w0∥22
2

652 / 785



The stochastic (sub)gradient descent algorithm

Consider now the minimization of an expectation

min
w∈Rp

f (w) = Ex[ℓ(x,w)],

To simplify, we assume that for all x, w 7→ ℓ(x,w) is differentiable, but
everything here is true for nonsmooth functions.

Algorithm

At iteration t,

Randomly draw one example xt from the training set;

Update the current iterate

wt ← wt−1 − ηt∇wℓ(xt ,wt−1).

Perform online averaging of the iterates (optional)

w̃t ← (1− γt)w̃t−1 + γtw
t .
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The stochastic (sub)gradient descent algorithm

There are various learning rates strategies (constant, varying step-sizes),
and averaging strategies. Depending on the problem assumptions and
choice of ηt , γt , classical convergence rates may be obtained:

f (w̃t)− f ⋆ = O(1/
√
t) for convex problems;

f (w̃t)− f ⋆ = O(1/t) for strongly-convex ones;

Remarks

The convergence rates are not that great, but the complexity
per-iteration is small (1 gradient evaluation for minimizing an
empirical risk versus n for the batch algorithm).

When the amount of data is infinite, the method minimizes the
expected risk.

Choosing a good learning rate automatically is an open problem.

654 / 785



Randomized incremental algorithms (1/2)

Consider now the minimization of a large finite sum of smooth convex
functions:

min
w∈Rp

1

n

n∑

i=1

fi (w),

A class of algorithms with low per-iteration complexity have been
recently introduced that enjoy exponential (aka, linear) convergence rates
for strongly-convex problems, e.g., SAG (Schmidt et al., 2016).

SAG algorithm

wt ← wt−1 − γ

Ln

n∑

i=1

yti with yti =

{ ∇fi (wt−1) if i = it
yt−1
i otherwise

.

See also SAGA (Defazio et al., 2014), SVRG (Xiao and Zhang, 2014),

SDCA (Shalev-Shwartz and Zhang, 2015), MISO (Mairal, 2015);
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Randomized incremental algorithms (2/2)

Many of these techniques are in fact performing SGD-types of steps

wt ← wt−1 − ηtgt ,

where E[gt |wt−1] = ∇f (wt−1), but where the estimator of the gradient
has lower variance than in SGD, see SVRG (Xiao and Zhang, 2014).

Typically, these methods have the convergence rate

f (wt)− f ⋆ = O

((
1− C max

(
1

n
,
µ

L

))t)

Remarks

their complexity per-iteration is independent of n!

unlike SGD, they are often almost parameter-free.

besides, they can be accelerated (Lin et al., 2015).
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Large-scale learning with linear models

Conclusion

we know how to deal with huge-scale linear problems;

this is also useful to learn with kernels!
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Nyström approximations: principle

Consider a p.d. kernel K : X × X → R and RKHS H, with the
mapping φ : X → H such that

K (x, x′) = ⟨φ(x), φ(x′)⟩H.

The Nyström method consists of replacing any point φ(x) in H, for x
in X by its orthogonal projection onto a finite-dimensional subspace

F := Span (f1, . . . , fp) with p ≪ n,

where the fi ’s are anchor points in H (to be defined later).

Motivation

This principle allows us to work explicitly in a finite-dimensional
space; it was introduced several times in the kernel literature [Williams

and Seeger, 2002], [Smola and Schölkopf, 2000], [Fine and Scheinberg, 2001].
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Nyström approximations: principle

The orthogonal projection is defined as

ΠF [x] := argmin
f ∈F

∥φ(x)− f ∥2H ,

Hilbert space H

F

ϕ(x)

ϕ(x′)
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Nyström approximations: principle

The projection is equivalent to

ΠF [x] :=

p∑

j=1

β⋆j fj with β⋆ ∈ argmin
β∈Rp

∥∥∥∥∥∥
φ(x)−

p∑

j=1

βj fj

∥∥∥∥∥∥

2

H

,

and β⋆ is the solution of the problem

min
β∈Rp

−2
p∑

j=1

βj⟨fj , φ(x)⟩H +

p∑

j ,l=1

βjβl⟨fj , fl⟩H,

or also

min
β∈Rp

−2
p∑

j=1

βj fj(x) +

p∑

j ,l=1

βjβl⟨fj , fl⟩H.
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Nyström approximations: principle

Then, call [Kf ]jl = ⟨fj , fl⟩H and f(x) = [f1(x), . . . , fp(x)] in Rp. The
problem may be rewritten as

min
β∈Rp

−2β⊤f(x) + β⊤Kfβ,

and, assuming Kf to be non-singular for simplicity, the solution is
β⋆(x) = K−1

f f(x). Then,

φ(x) ≈
p∑

j=1

β⋆j (x)fj ,

and

⟨φ(x), φ(x′)⟩H ≈
〈

p∑

j=1

β⋆j (x)fj ,

p∑

j=1

β⋆j (x
′)fj

〉

H

=

p∑

j ,l=1

β⋆j (x)β
⋆
l (x

′)⟨fj , fl⟩H = β⋆(x)⊤Kfβ
⋆(x′).
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Nyström approximations: principle

This allows us to define the mapping

ψ(x) = K
1/2
f β⋆(x) = K

−1/2
f f(x),

and we have the approximation K (x, x′) ≈ ⟨ψ(x), ψ(x′)⟩Rp .

Remarks

the mapping provides low-rank approximations of the kernel matrix.
Given an n × n Gram matrix K computed on a training set
S = {x1, . . . , xn}, we have

K ≈ ψ(S)⊤ψ(S),

where ψ(S) := [ψ(x1), . . . , ψ(xn)].

the approximation has a geometric interpretation.

We need to define a good strategy for choosing the fj ’s.
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Nyström approximation via kernel PCA

Let us now try to learn the fj ’s given training data x1, . . . , xn in X :

min
f1,...,fp∈H

βij∈R

n∑

i=1

∥∥∥∥∥∥
φ(xi )−

p∑

j=1

βij fj

∥∥∥∥∥∥

2

H

.

Using similar calculation as before, the objective is equivalent to

min
f1,...,fp∈H
βi∈Rp

n∑

i=1

−2β⊤
i f(xi ) + β⊤

i Kfβi ,

and, by minimizing with respect to all βi with f fixed, we have that
βi = K−1

f f(xi ) (assuming Kf to be invertible), which leads to

max
f1,...,fp∈H

n∑

i=1

f(xi )
⊤K−1

f f(xi ).
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Nyström approximation via kernel PCA

Remember the objective:

max
f1,...,fp∈H

n∑

i=1

f(xi )
⊤K−1

f f(xi ).

Consider an optimal solution f⋆ and compute the eigenvalue
decomposition of Kf⋆ = U∆U⊤. Then, define the functions

g⋆(x) := [g⋆
1 (x), . . . , g

⋆
p (x)] = ∆−1/2U⊤f⋆(x).

The functions g⋆
j are points in the RKHS H since they are linear

combinations of the functions f ⋆j in H.

Exercise: check that all we do here and in the next slides can be
extended to deal with singular Gram matrices Kf⋆ and Kf .
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Nyström approximation via kernel PCA

Besides, by construction

[Kg⋆ ]jl := ⟨g⋆
j , g

⋆
l ⟩H

=

〈
1√
∆jj

p∑

k=1

[U]kj f
⋆
k ,

1√
∆ll

p∑

k=1

[U]kl f
⋆
k

〉

H

=
1√
∆jj

1√
∆ll

p∑

k,k ′=1

[U]kj [U]k ′l ⟨f ⋆k , f ⋆k ′⟩H

=
1√
∆jj

1√
∆ll

p∑

k,k ′=1

[U]kj [U]k ′l [Kf ⋆ ]kk ′

=
1√
∆jj

1√
∆ll

u⊤j Kf ⋆ul

= δj=l .
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Nyström approximation via kernel PCA

Then, Kg⋆ = I and g⋆ is also a solution of the problem

max
f1,...,fp∈H

n∑

i=1

f(xi )
⊤K−1

f f(xi ),

since

f⋆(xi )
⊤K−1

f⋆ f⋆(xi ) = f⋆(xi )
⊤U∆−1U⊤f⋆(xi )

= g⋆(xi )
⊤g⋆(xi ) = g⋆(xi )

⊤K−1
g⋆ g

⋆(xi ),

and also a solution of the problem

max
g1,...,gp∈H

p∑

j=1

n∑

i=1

gj(xi )
2 s.t. gj ⊥ gk for k ̸= j and ∥gj∥H = 1.

This is the kernel PCA formulation!
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Nyström approximation via kernel PCA

Our first recipe with kernel PCA

Given a dataset of n training points x1, . . . , xn in X ,
randomly choose a subset Z = [xz1 , . . . , xzm ] of m ≤ n training
points;

compute the m ×m kernel matrix KZ .

perform kernel PCA to find the p ≤ m largest principal directions
(parametrized by p vectors αj in Rm);

Then, every point x in X may be approximated by

ψ(x) = K
−1/2
g⋆ g⋆(x) = g⋆(x) = [g⋆

1 (x), . . . , g
⋆
p (x)]

⊤

=

[
m∑

i=1

α1iK (xzi , x), . . . ,
m∑

i=1

αpiK (xzi , x)

]⊤
.
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Nyström approximation via kernel PCA

Remarks

The vector ψ(x) can be interpreted as coordinates of the projection
of φ(x) onto the (orthogonal) PCA basis.

The complexity of training is O(m3) (eig decomposition of KZ) +
O(m2) kernel evaluations.

The complexity of encoding a new point x is O(mp) (matrix vector
multiplication) + O(m) kernel evaluations.

The main issue is the encoding time, which depends linearly on m > p.
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Nyström approximation via random sampling

A popular alternative is instead to select the anchor points among the
training data points x1, . . . , xn—that is,

F := span(φ(xz1), . . . , φ(zzp)).

In other words, choose f1 = φ(xz1), . . . , fp = φ(xzp).

Second recipe with random point sampling

Given a dataset of n training points x1, . . . , xn in X ,
randomly choose a subset Z = [xz1 , . . . , xzp ] of p training points;

compute the p × p kernel matrix KZ .

Then, a new point x is encoded as

ψ(x) = K
−1/2
Z fZ(x)

= K
−1/2
Z [K (xz1 , x), . . . ,K (xzp , x)]

⊤
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Nyström approximation via random sampling

The complexity of training is O(p3) (eig decomposition) + O(p2)
kernel evaluations.

The complexity of encoding a point x is O(p2) (matrix vector
multiplication) + O(p) kernel evaluations.

The main issue complexity is better, but we lose the “optimality” of the
PCA basis and the random choice of anchor points is not clever.
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Nyström approximation via greedy approach

Better approximation can be obtained with a greedy algorithm that
iteratively selects one column at a time with largest residual (Bach and
Jordan, 2002; Smola and Shölkopf, 2000, Fine and Scheinbert, 2000).

At iteration k , assume that Z = {xz1 , . . . , xzk}; then, the residual for a
data point x encoded with k anchor points f1, . . . , fk is

min
β∈Rk

∥∥∥∥∥∥
φ(x)−

k∑

j=1

βjφ(xzj )

∥∥∥∥∥∥

2

H

,

which is equal to
∥φ(x)∥2H − fZ(x)

⊤K−1
Z fZ(x),

and since fj = φ(xzj ) for all j , the data point xi with largest residual is
the one that maximizes

K (xi , xi )− fZ(xi )K
−1
Z fZ(xi ) with fZ(xi ) = [K (xz1 , x), . . . ,K (xzk , x)]

⊤.
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Nyström approximation via greedy approach

This brings us to the following algorithm

Third recipe with greedy anchor point selection

Initialize Z = ∅. For k = 1, . . . , p do

data point selection

zk ← argmax
i∈{1,...,n}

K (xi , xi )− fZ(xi )K
−1
Z fZ(xi );

update the set Z
Z ← Z ∪ {xzk}.

Remarks

A naive implementation costs (O(k2n + k3) at every iteration.

To get a reasonable complexity, one has to use simple linear algebra
tricks (see next slide).
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Nyström approximation via greedy approach

If Z ′ = Z ∪ {z},

K−1
Z′ =

[
KZ fZ(z)

fZ(z)
⊤ K (z, z)

]−1

=

[
K−1

Z + 1
s bb

⊤ −1
s b

−1
s b

⊤ 1
s

]
,

where s is the Schur complement s = K (z, z)− fZ(z)K
−1
Z fZ(z), and

b = K−1
Z fZ(z).

Complexity analysis

K−1
Z′ can be obtained from K−1

Z and fZ(z) in O(k2) float operations;
for that we need to always keep into memory the n vectors fZ(xi ).

updating the fZ′(xi )’s from fZ(xi ) requires n kernel evaluations;

The total training complexity is O(p2n) float operations and O(pn)
kernel evaluations
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Nyström approximation via K-means

When X = Rd , it is also possible to synthesize points z1, . . . , zp such
that they represented well some training data x1, . . . , xn, leading to the
Clustred Nyström approximation (Zhang and Kwok, 2008).

Fourth recipe with K-means

1 Perform the regular K-means algorithm on the training data, to
obtain p centroids z1, . . . , zp in Rp.

2 Define the anchor points fj = φ(zj) for j = 1, . . . , p, and perform
the classical Nyström approximation.

Remarks

The complexity is the same as Nyström with random selection
(except for the K-means step);

The method is data-dependent and can significantly outperform the
other variants in practice.
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Nyström approximation: conclusion

Concluding remarks

The greedy selection rule is equivalent to computing an incomplete
Cholesky factorization of the kernel matrix (Bach and Jordan, 2002;
Scholköpf and Smola, 2000, Fine and Scheinberg, 2001);

The techniques we have seen produce low-rank approximations of
the kernel matrix K ≈ LL⊤;

The method admits a geometric interpretation in terms of
orthogonal projection onto a finite-dimensional subspace.

The approximation provides points in the RKHS. As such, many
operations on the mapping are valid (translations, linear
combinations, projections), unlike the method that will come next.
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Random Fourier features [Rahimi and Recht, 2007] (1/5)

A large class of approximations for shift-invariant kernels are based on
sampling techniques. Consider a real-valued positive-definite continuous
translation-invariant kernel K (x, y) = κ(x− y) with κ : Rd → R. Then,
if κ(0) = 1, Bochner theorem tells us that κ is a valid characteristic
function for some probability measure

κ(z) = Ew[e
iw⊤z].

Remember indeed that, with the right assumptions on κ,

κ(x− y) =
1

(2π)d

∫

Rd

κ̂(w)e iw
⊤xe−iw⊤ydw,

and the probability measure admits a density q(w) = 1
(2π)d

κ̂(w)

(non-negative, real-valued, sum to 1 since κ(0) = 1).
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Random Fourier features (2/5)

Then,

κ(x− y) =
1

(2π)d

∫

Rd

κ̂(w)e iw
⊤xe−iw⊤ydw

=

∫

Rd

q(w) cos(w⊤x−w⊤y)dw

=

∫

Rd

q(w)
(
cos(w⊤x) cos(w⊤y) + sin(w⊤x) sin(w⊤y)

)
dw

=

∫

Rd

∫ 2π

b=0

q(w)

2π
2 cos(w⊤x+ b) cos(w⊤y + b)dwdb (exercise)

= Ew∼q(w),b∼U [0,2π]

[√
2 cos(w⊤x+ b)

√
2 cos(w⊤y + b)

]
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Random Fourier features (3/5)

Random Fourier features recipe

Compute the Fourier transform of the kernel κ̂ and define the
probability density q(w) = κ̂(w)/(2π)d ;

Draw p i.i.d. samples w1, . . . ,wp from q and p i.i.d. samples
b1, . . . , bp from the uniform distribution on [0, 2π];

define the mapping

x 7→ ψ(x) =

√
2

d

[
cos(w⊤

1 x+ b1), . . . , cos(w
⊤
p x+ bp)

]⊤
.

Then, we have that

κ(x− y) ≈ ⟨ψ(x), ψ(y)⟩Rp .

The two quantities are equal in expectation.
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Random Fourier features (4/5)

Theorem, [Rahimi and Recht, 2007]

On any compact subset X of Rm, for all ε > 0,

P

[
sup
x,y∈X

|κ(x− y)− ⟨ψ(x), ψ(y)⟩Rp | ≥ ε
]
≤ 28

(
σqdiam(X )

ε

)2

e
− pε2

4(m+2) ,

where σ2q = Ew∼q(w)[w
⊤w] is the second moment of the Fourier

transform of κ.

Remarks

The convergence is uniform, not data dependent;

Take the sequence εp =
√

log(p)
p σqdiam(X ); Then the term on the

right converges to zero when p grows to infinity;

Prediction functions with Random Fourier features are not in H.
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Random Fourier features (5/5)

Ingredients of the proof

For a fixed pair of points x, y, Hoeffding’s inequality says that

P
[
|κ(x− y)− ⟨ψ(x), ψ(y)⟩Rd |︸ ︷︷ ︸

f (x,y)

≥ ε
]
≤ 2e−

pε2

4 .

Consider a net (set of balls of radius r) that covers
X∆ = {x− y : (x, y) ∈ X} with at most T = (4diam(X )/r)m balls.

Apply the Hoeffding’s inequality to the centers xi − yi of the balls;

Use a basic union bound

P
[
sup
i

f (xi , yi ) ≥
ε

2

]
≤
∑

i

P
[
f (xi , yi ) ≥

ε

2

]
≤ 2Te−

pε2

8 .

Glue things together: control the probability for points (x, y) inside
each ball, and adjust the radius r (a bit technical).
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Understanding deep learning

The challenge of deep learning theory

Over-parameterized (millions of parameters)

Expressive (can approximate any function)

Complex architectures for exploiting problem structure

Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint

View deep networks as functions in some functional space;

Non-parametric models, natural measures of complexity (e.g.,
norms).

What is an appropriate functional space?
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Success of deep learning
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In the context of supervised learning

The goal is to learn a prediction function f : X → Y given labeled
training data (xi , yi )i=1,...,n with xi in X , and yi in Y:

min
f ∈F

1

n

n∑

i=1

L(yi , f (xi ))

︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f )︸ ︷︷ ︸
regularization

.

What is specific to multilayer neural networks?

The “neural network” space F is explicitly parametrized by:

f (x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)).

Linear operations are either unconstrained (fully connected) or
involve parameter sharing (e.g., convolutions).

Finding the optimal A1,A2, . . . ,Ak yields a non-convex
optimization problem.
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Convolutional Neural Networks

Picture from LeCun et al. (1998)

What are the main features of CNNs?

they capture compositional and multiscale structures in images;

they provide some invariance;

they model the local stationarity of images at several scales;
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Convolutional Neural Networks

(Simonyan and Zisserman, 2014)

What are the main features of CNNs?

they capture compositional and multiscale structures in images;

they provide some invariance;

they model the local stationarity of images at several scales;
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CNNs (Picture from unknown source)

ImageNet: 1000 image categories, 10M hand-labeled images; top-5 error
rate.

Figure: Top-5 error rate
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Convolutional neural networks for biological sequences

Figure: two-layer CNN architecture from Alipanahi et al. (2015)

Sequences are represented by one-hot encoding
(A=(1,0,0,0),C=(0,1,0,0),. . . ).

Single convolution layer followed by linear classifier.
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Convolutional Neural Networks

What are current important problems to solve?

1 lack of stability and robustness (see next slide).

2 learning without large amounts of data.

3 making interpretable decisions.

4 . . .
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Adversarial examples, Picture from Kurakin et al. (2016)

Figure: Adversarial examples are generated by computer; then printed on paper;
a new picture taken on a smartphone fools the classifier.
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Adversarial examples

clean + noise → “ostrich” (Szegedy et al., 2013).
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Adversarial examples

(a real ostrich)
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Adversarial examples

https://github.com/anishathalye/obfuscated-gradients
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Convolutional Neural Networks

min
f ∈F

1

n

n∑

i=1

L(yi , f (xi ))

︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f )︸ ︷︷ ︸
regularization

.

The issue of regularization

today, heuristics are used (DropOut, weight decay, early stopping)...

...but they are not sufficient.

how to control variations of prediction functions?

|f (x)− f (x′)| should be close if x and x′ are “similar”.

what does it mean for x and x ′ to be “similar”?

what should be a good regularization function Ω?
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Relevant concepts

Dot-product kernels:

K (x , x ′) = κ(x⊤x ′) or K (x , x ′) = ∥x∥∥x ′∥κ
(

x⊤x ′

∥x∥∥x ′∥

)

Hierarchical composition of feature spaces:

K (x , x ′) = ⟨Φ(x),Φ(x ′)⟩ with Φ(x) = φ2(φ1(x))

NTK: Asymptotic behavior of over-parametrized deep neural
networks learned by gradient descent.

CKN: Convolutional and hierarchical kernel constructions +
end-to-end learning with kernels.

What does it mean to do end-to-end learning with kernels?
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Kernels for deep models: deep kernel machines

Hierarchical kernels (Cho and Saul, 2009b)

Kernels can be constructed hierarchically

K (x , x ′) = ⟨Φ(x),Φ(x ′)⟩ with Φ(x) = φ2(φ1(x))

e.g., dot-product kernels on the sphere

K (x , x ′) = κ2(⟨φ1(x), φ1(x
′)⟩) = κ2(κ1(x

⊤x ′))
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Kernels can be constructed hierarchically

K (x , x ′) = ⟨Φ(x),Φ(x ′)⟩ with Φ(x) = φ2(φ1(x))

e.g., dot-product kernels on the sphere

K (x , x ′) = κ2(⟨φ1(x), φ1(x
′)⟩) = κ2(κ1(x

⊤x ′))

A classical old result (Schoenberg, 1942)

Let X = S be the unit sphere of some Hilbert space H0. The kernel
K : X 2 → R

K (x, y) = κ(⟨x, y⟩H0),

is positive definite for all H0 if and only if κ is smooth and admits an
expansion κ(u) =

∑
i aiu

i with non-negative coefficients ai .
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Kernels for deep models: dot-product kernels

linear kernel ⟨z , z ′⟩
exponential kernel eα(⟨z,z

′⟩−1)

inverse polynomial kernel 1
2−⟨z,z ′⟩

polynomial kernel of degree p (c + ⟨z , z ′⟩)p

arc-cosine kernel of degree 1 1
π (sin(θ) + (π − θ) cos(θ))
with θ = arccos(⟨z , z ′⟩)

Vovk’s kernel of degree 3 1
3

(
1−⟨z,z ′⟩3
1−⟨z,z ′⟩

)
= 1

3

(
1 + ⟨z , z ′⟩+ ⟨z , z ′⟩2

)

Remark

if ∥z∥ = ∥z ′∥ = 1, the exponential kernel recovers the Gaussian kernel

κexp(⟨z , z ′⟩) = eα(⟨z,z
′⟩−1) = e−

α
2
∥z−z ′∥2 ,
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Kernels for deep models: random feature kernels

fθ(x) =
1√
m

m∑

i=1

viσ(w
⊤
i x), m→∞

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)

θ = (vi )i , fixed random weights wi ∼ N(0, I )

KRF (x , y) = Ew∼N(0,I )[σ(w
⊤x)σ(w⊤y)]

integral representations are not only available for t.i. kernels. They
also work for several dot-product kernels (Cho and Saul, 2009b):

kn(x , y) =
1

π
∥x∥n∥y∥nJn(θ) with θ = cos−1

(
x⊤y

∥x∥∥y∥

)

with
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also work for several dot-product kernels (Cho and Saul, 2009b):

kn(x , y) =
1

π
∥x∥n∥y∥nJn(θ) with θ = cos−1

(
x⊤y

∥x∥∥y∥

)

with

Jn(θ) = (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n (π − θ
sin θ

)
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Kernels for deep models: random feature kernels

fθ(x) =
1√
m

m∑

i=1

viσ(w
⊤
i x), m→∞

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)

θ = (vi )i , fixed random weights wi ∼ N(0, I )

KRF (x , y) = Ew∼N(0,I )[σ(w
⊤x)σ(w⊤y)]

integral representations are not only available for t.i. kernels. They
also work for several dot-product kernels (Cho and Saul, 2009b):

kn(x , y) =
1

π
∥x∥n∥y∥nJn(θ) with θ = cos−1

(
x⊤y

∥x∥∥y∥

)

with 



J0(θ) = π − θ
J1(θ) = sin(θ) + (π − θ) cos(θ)
J2(θ) = 3 sin(θ) cos(θ) + (π − θ)(1 + 2 cos2(θ))
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Kernels for deep models: random feature kernels

Theorem, (Cho and Saul, 2009a)

Consider

kn(x , y) =
1

π
∥x∥n∥y∥nJn(θ) with θ = cos−1

(
x⊤y

∥x∥∥y∥

)
.

Then
kn(x , y) = Ew∼N(0,I )[σ(w

⊤x)σ(w⊤y)],

with σ(u) = un√
2
(1 + sign(u)).

Note that k1(x , y) = Ew∼N(0,I )[RELU(w
⊤x)RELU(w⊤y)].

One of the fundamental tool to analyze RELU networks.
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Kernels for deep models: neural tangent kernels

fθ(x) =
1√
m

m∑

i=1

viσ(w
⊤
i x), m→∞

Neural tangent kernels (NTK, Jacot et al., 2018)

θ = (vi ,wi )i , initialization θ0 ∼ N(0, I )

Lazy training (Chizat et al., 2019): θ stays close to θ0 when
training with large m

fθ(x) ≈ fθ0(x) + ⟨θ − θ0,∇θfθ(x)|θ=θ0⟩.

Gradient descent for m→∞ ≈ kernel ridge regression with neural
tangent kernel
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Lazy training (Chizat et al., 2019): θ stays close to θ0 when
training with large m

fθ(x) ≈ fθ0(x) + ⟨θ − θ0,∇θfθ(x)|θ=θ0⟩.

Gradient descent for m→∞ ≈ kernel ridge regression with neural
tangent kernel

KNTK (x , y) = Ew[σ(w
⊤x)σ(w⊤y) + (x⊤y)σ′(w⊤x)σ′(w⊤y)]

with RELU networks, we obtain a dot-product kernel.
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Kernels for deep models: dot-product kernels + Nyström

The Nyström method consists of replacing any point φ(x) in H, for x
in X by its orthogonal projection onto a finite-dimensional subspace

F = span(φ(z1), . . . , φ(zp)),

for some anchor points Z = [z1, . . . , zp] in Rd×p

Hilbert space H

F

ϕ(x)

ϕ(x′)
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Kernels for deep models: dot-product kernels + Nyström

The projection is equivalent to

ΠF [x] :=

p∑

j=1

β⋆j φ(zj) with β⋆ ∈ argmin
β∈Rp

∥∥∥∥∥∥
φ(x)−

p∑

j=1

βjφ(zj)

∥∥∥∥∥∥

2

H

,

Then, it is possible to show that with K (x, y) = κ(⟨x, y⟩),

K (x, y) ≈ ⟨ΠF [x],ΠF [y]⟩H = ⟨ψ(x), ψ(y)⟩Rp ,

with
ψ(x) = κ(Z⊤Z)−1/2κ(Z⊤x),

where the function κ is applied pointwise to its arguments. The resulting
ψ can be interpreted as a neural network performing (i) linear operation,
(ii) pointwise non-linearity, (iii) linear operation.

(Williams and Seeger, 2001; Smola and Schölkopf, 2000; Fine and Scheinberg, 2001).
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Kernels for deep models: end-to-end learning

Nyström’s encoding with a dot-product kernel provides the encoding

ψZ(x) = κ(Z⊤Z)−1/2κ(Z⊤x).

The anchor points Z can be learned in various manners

unsupervised learning: use K-means!

supervised learning: use back-propagation

min
w,Z

1

n

n∑

i=1

L(yi ,w
⊤ψZ(xi )) + λ∥w∥2.

end-to-end learning with kernels may mean learning a parametrized linear
subspace of the RKHS, where we project the data.
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Kernels for deep models: Convolutional Kernel Networks

What is the relation?

it is possible to design functional spaces H where deep neural
networks live (Mairal, 2016).

f (x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)) = ⟨f ,Φ(x)⟩H.

we call the construction “convolutional kernel networks”.
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it is possible to design functional spaces H where deep neural
networks live (Mairal, 2016).

f (x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)) = ⟨f ,Φ(x)⟩H.

we call the construction “convolutional kernel networks”.

Simple story about CKNs (Mairal, 2016)

for the theory part, replace x 7→ σ(Ax) at each CNN layer by a
kernel mapping x 7→ φ(x) associated to a dot-product kernel.

for the practical part, replace x 7→ σ(Ax) by Nyström’s embedding
x 7→ κ(Z⊤Z)−1/2κ(Z⊤x). Then, you can either use K-means to
learn the anchor points (unsupervised learning), or use
back-propagation (supervised learning).
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we call the construction “convolutional kernel networks”.

Why do we care?

Φ(x) is related to the network architecture and is independent of
training data. Is it stable? Does it lose signal information?

f is a predictive model. Can we control its stability?

|f (x)− f (x ′)| ≤ ∥f ∥H∥Φ(x)− Φ(x ′)∥H.
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Construction of the RKHS for continuous signals

Initial map x0 in L2(Ω,H0)

x0 : Ω→ H0: continuous signal, with Ω = Rd (d = 2 for images).

x0(u) ∈ H0: input value at location u (H0 = R3 for RGB images).

Building map xk in L2(Ω,Hk) from xk−1 in L2(Ω,Hk−1)

xk : Ω→ Hk : feature map at layer k

xk = AkMkPkxk−1.

Pk : patch extraction operator, extract small patch of feature map
xk−1 around each point u (Pkxk−1(u) is a patch centered at u).

Mk : non-linear mapping operator, maps each patch to a new
Hilbert space Hk with a pointwise non-linear function φk(·).
Ak : (linear) pooling operator at scale σk .
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Construction of the RKHS for continuous signals

xk–1 : Ω→ Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

xk–0.5(v) = ϕk(Pkxk–1(v)) ∈ Hk
xk–0.5 : Ω→ Hk

xk : Ω→ Hk

linear pooling
xk(w) ∈ Hk
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Construction of the RKHS for continuous signals

Kernel mapping for patches

We use a homogeneous dot-product kernel for image patches

K (z , z ′) = ∥z∥∥z ′∥κ
( ⟨z , z ′⟩
∥z∥∥z ′∥

)
.

Multilayer representation

Φn(x) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

σk grows exponentially in practice (i.e., fixed with subsampling).

Prediction layer

e.g., linear f (x) = ⟨w ,Φn(x)⟩.
“linear kernel” K(x , x ′) = ⟨Φn(x),Φn(x

′)⟩ =
∫
Ω⟨xn(u), x ′n(u)⟩du.
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Convolutional Kernel Networks in practice

I0

z

z′

kernel trick

projection on F1

M1

ψ1(z)

ψ1(z
′)

I1
linear pooling

Hilbert space H1

F1

ϕ1(z)

ϕ1(z
′)

Learning mechanism of CKNs between layers 0 and 1.
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Convolutional Kernel Networks in Practice

What is the difference with a CNN?

Given a patch x , a CNN computes ψCNN(x) = σ(Z⊤x).

whereas a CKN computes ψCKN(x) = ∥x∥κ(Z⊤Z)−1/2κ(Z⊤x/∥x∥).

Consequences

we have a geometric interpretation in terms of subspace learning.

it provides unsupervised learning mechanisms (Nyström).

supervised learning is feasible.

the kernel interpretation provides regularization mechanisms.

kernel representations can possibly be used in other contexts
(statistical testing? kernel PCA? CCA? K-means?).
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Experiments

Briefly state-of-the-art for image retrieval (Paulin et al., 2015);

Briefly state-of-the-art for image super-resolution (Mairal, 2016);

Interesting findings from CIFAR-10

about 92% with supervision, mild data augmentation, 14 layers, 256
anchor points per layers (no need for batch norm, vanilla
SGD+momentum).

about 86% with no supervision for a two-layer model with a huge
number of anchor points (1024-16384) and no data augmentation.

with no supervision, the performance monotonically increases
with the dimension (better kernel approximation).

computing the exact kernel does not make sense in practice for
computational reasons, but it is feasible with lots of CPUs; it yields
about 90% with three layers (unpublished, by A. Bietti), which is
consistent with (Shankar et al., 2020).
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Other relations between kernels and deep learning

hierarchical kernel descriptors (Bo et al., 2011);

other multilayer models (Bouvrie et al., 2009; Montavon et al.,
2011; Anselmi et al., 2015);

deep Gaussian processes (Damianou and Lawrence, 2013).

multilayer PCA (Schölkopf et al., 1998).

old kernels for images (Scholkopf, 1997), related to one-layer CKN.

RBF networks (Broomhead and Lowe, 1988).

. . .
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Outline

7 Open Problems and Research Topics
Multiple Kernel Learning (MKL)
Large-scale learning with kernels
Foundations of deep learning from a kernel point of view

Motivation
Deep kernel machines
Deep learning and stability
Application to graphs
Application to biological sequences
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Focus on convolutional kernel networks (CKNs)

What is the relation?

it is possible to design functional spaces H for deep neural
networks (Mairal, 2016).

f (x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)) = ⟨f ,Φ(x)⟩H.

we call the construction “convolutional kernel networks” (in
short, replace u 7→ σ(⟨a, u⟩) by a kernel mapping u 7→ φk(u).

Why do we care?

Φ(x) is related to the network architecture and is independent of
training data. Is it stable? Does it lose signal information?

f is a predictive model. Can we control its stability?

|f (x)− f (x ′)| ≤ ∥f ∥H∥Φ(x)− Φ(x ′)∥H.
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Summary of the results from Bietti and Mairal (2019a)

Multi-layer construction of the RKHS H
Contains CNNs with smooth homogeneous activations functions.

Signal representation: Conditions for

Signal preservation of the multi-layer kernel mapping Φ.

Stability to deformations and non-expansiveness for Φ.

Constructions to achieve group invariance.

On learning

Bounds on the RKHS norm ∥.∥H to control stability and
generalization of a predictive model f .

|f (x)− f (x ′)| ≤ ∥f ∥H∥Φ(x)− Φ(x ′)∥H.
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Smooth homogeneous activations functions

z 7→ ReLU(w⊤z) =⇒ z 7→ ∥z∥σ(w⊤z/∥z∥).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

f(x
)

f : x (x)
ReLU
sReLU

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

f(x
)

f : x |x| (wx/|x|)
ReLU, w=1
sReLU, w = 0
sReLU, w = 0.5
sReLU, w = 1
sReLU, w = 2

718 / 785



Stability to deformations
Deformations

τ : Ω→ Ω: C 1-diffeomorphism

Lτx(u) = x(u − τ(u)): action operator

Much richer group of transformations than translations

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

Studied for wavelet-based scattering transform (Mallat, 2012; Bruna
and Mallat, 2013)
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Stability to deformations
Deformations

τ : Ω→ Ω: C 1-diffeomorphism

Lτx(u) = x(u − τ(u)): action operator

Much richer group of transformations than translations

Definition of stability

Representation Φ(·) is stable (Mallat, 2012) if:

∥Φ(Lτx)− Φ(x)∥ ≤ (C1∥∇τ∥∞ + C2∥τ∥∞)∥x∥

∥∇τ∥∞ = supu ∥∇τ(u)∥ controls deformation

∥τ∥∞ = supu |τ(u)| controls translation
C2 → 0: translation invariance
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Smoothness and stability with kernels

Geometry of the kernel mapping: f (x) = ⟨f ,Φ(x)⟩

|f (x)− f (x ′)| ≤ ∥f ∥H · ∥Φ(x)− Φ(x ′)∥H

∥f ∥H controls complexity of the model

Φ(x) encodes CNN architecture independently of the model
(smoothness, invariance, stability to deformations)

Useful kernels in practice:

Convolutional kernel networks (CKNs, Mairal, 2016) with efficient
approximations

Extends to neural tangent kernels (NTKs, Jacot et al., 2018) of
infinitely wide CNNs (Bietti and Mairal, 2019b)
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Recap: Construction of the RKHS for continuous signals

xk–1 : Ω→ Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

xk–0.5(v) = ϕk(Pkxk–1(v)) ∈ Hk
xk–0.5 : Ω→ Hk

xk : Ω→ Hk

linear pooling
xk(w) ∈ Hk

Φn(x) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).
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Patch extraction operator Pk

Pkxk–1(u) := (xk–1(u + v))v∈Sk ∈ Pk = HSk
k–1

xk–1 : Ω→ Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)
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Patch extraction operator Pk

Pkxk–1(u) := (xk–1(u + v))v∈Sk ∈ Pk = HSk
k–1

Sk : patch shape, e.g. box
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Non-linear mapping operator Mk

MkPkxk–1(u) := φk(Pkxk–1(u)) ∈ Hk

xk–1 : Ω→ Hk–1

Pkxk–1(v) ∈ Pk

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω→ Hk
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Non-linear mapping operator Mk

MkPkxk–1(u) := φk(Pkxk–1(u)) ∈ Hk

Kernel mapping of homogeneous dot-product kernels:

Kk(z , z
′) = ∥z∥∥z ′∥κk

( ⟨z , z ′⟩
∥z∥∥z ′∥

)
= ⟨φk(z), φk(z

′)⟩.

κk(u) =
∑∞

j=0 bju
j with bj ≥ 0, κk(1) = 1

Examples

κexp(⟨z , z ′⟩) = e⟨z,z
′⟩−1 (Gaussian kernel on the sphere)

κinv-poly(⟨z , z ′⟩) = 1
2−⟨z,z ′⟩
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =

∫

Rd

hσk
(u − v)MkPkxk–1(v)dv ∈ Hk

xk–1 : Ω→ Hk–1

MkPkxk–1 : Ω→ Hk

xk := AkMkPkxk–1 : Ω→ Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =

∫

Rd

hσk
(u − v)MkPkxk–1(v)dv ∈ Hk

hσk
: pooling filter at scale σk

hσk
(u) := σ−d

k h(u/σk) with h(u) Gaussian

linear, non-expansive operator: ∥Ak∥ ≤ 1

In practice: discretization, sampling at resolution σk after pooling

“Preserves information” when subsampling ≤ patch size
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Recap: Pk , Mk , Ak

xk–1 : Ω→ Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

xk–0.5(v) = ϕk(Pkxk–1(v)) ∈ Hk
xk–0.5 : Ω→ Hk

xk : Ω→ Hk

linear pooling
xk(w) ∈ Hk
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Recap: multilayer construction

Multilayer representation

Φ(x0) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

Sk , σk grow exponentially in practice (i.e., fixed with subsampling).

Assumption on x0

x0 is typically a discrete signal aquired with physical device.

Natural assumption: x0 = A0x , with x the original continuous
signal, A0 local integrator with scale σ0 (anti-aliasing).

Final kernel

KCKN(x , x
′) = ⟨Φ(x),Φ(x ′)⟩L2(Ω) =

∫

Ω
⟨xn(u), x ′n(u)⟩du
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Warmup: translation invariance

Representation

Φn(x) := AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x .

How to achieve translation invariance?

Translation: Lcx(u) = x(u − c).

Equivariance - all operators commute with Lc : □Lc = Lc□.

∥Φn(Lcx)− Φn(x)∥ = ∥LcΦn(x)− Φn(x)∥
≤ ∥LcAn − An∥ · ∥MnPnΦn–1(x)∥
≤ ∥LcAn − An∥∥x∥.

Mallat (2012): ∥LτAn − An∥ ≤ C2
σn
∥τ∥∞ (operator norm).

Scale σn of the last layer controls translation invariance.

727 / 785



Warmup: translation invariance

Representation

Φn(x) := AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x .

How to achieve translation invariance?

Translation: Lcx(u) = x(u − c).

Equivariance - all operators commute with Lc : □Lc = Lc□.

∥Φn(Lcx)− Φn(x)∥ = ∥LcΦn(x)− Φn(x)∥
≤ ∥LcAn − An∥ · ∥MnPnΦn–1(x)∥
≤ ∥LcAn − An∥∥x∥.

Mallat (2012): ∥LτAn − An∥ ≤ C2
σn
∥τ∥∞ (operator norm).

Scale σn of the last layer controls translation invariance.

727 / 785



Warmup: translation invariance

Representation

Φn(x) := AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x .

How to achieve translation invariance?

Translation: Lcx(u) = x(u − c).

Equivariance - all operators commute with Lc : □Lc = Lc□.

∥Φn(Lcx)− Φn(x)∥ = ∥LcΦn(x)− Φn(x)∥
≤ ∥LcAn − An∥ · ∥MnPnΦn–1(x)∥
≤ ∥LcAn − An∥∥x∥.

Mallat (2012): ∥LτAn − An∥ ≤ C2
σn
∥τ∥∞ (operator norm).

Scale σn of the last layer controls translation invariance.

727 / 785



Warmup: translation invariance

Representation

Φn(x) := AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x .

How to achieve translation invariance?

Translation: Lcx(u) = x(u − c).

Equivariance - all operators commute with Lc : □Lc = Lc□.

∥Φn(Lcx)− Φn(x)∥ = ∥LcΦn(x)− Φn(x)∥
≤ ∥LcAn − An∥ · ∥MnPnΦn–1(x)∥
≤ ∥LcAn − An∥∥x∥.

Mallat (2012): ∥LcAn − An∥ ≤ C2
σn
c (operator norm).

Scale σn of the last layer controls translation invariance.

727 / 785



Stability to deformations

Representation

Φn(x) := AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x .

How to achieve stability to deformations?

Patch extraction Pk and pooling Ak do not commute with Lτ !

∥∥ ≤ C1∥∇τ∥∞ (from Mallat, 2012).

But: [Pk , Lτ ] is unstable at high frequencies!

Adapt to current layer resolution, patch size controlled by σk–1:

∥[PkAk–1, Lτ ]∥ ≤ C1,κ∥∇τ∥∞ sup
u∈Sk
|u| ≤ κσk–1

C1,κ grows as κd+1 =⇒ more stable with small patches
(e.g., 3x3, VGG et al.).
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Stability to deformations

Theorem (Stability of CKN (Bietti and Mairal, 2019a))

Let Φn(x) = Φ(A0x) and assume ∥∇τ∥∞ ≤ 1/2,

∥Φn(Lτx)− Φn(x)∥ ≤
(
Cβ (n + 1) ∥∇τ∥∞ +

C

σn
∥τ∥∞

)
∥x∥

Translation invariance: large σn

Stability: small patch sizes (β ≈ patch size, Cβ = O(β3) for images)

Signal preservation: subsampling factor ≈ patch size

=⇒ need several layers with small
patches n = O(log(σn/σ0)/ log β)

Achieved by controlling norm of commutator [Lτ ,PkAk–1]

Extend result by Mallat (2012) for controlling ∥[Lτ ,A]∥
Need patches Sk adapted to resolution σk–1: diam Sk ≤ βσk–1
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Beyond the translation group

Can we achieve invariance to other groups?

Group action: Lgx(u) = x(g−1u) (e.g., rotations, reflections).

Feature maps x(u) defined on u ∈ G (G : locally compact group).

Recipe: Equivariant inner layers + global pooling in last layer

Patch extraction:
Px(u) = (x(uv))v∈S .

Non-linear mapping: equivariant because pointwise!

Pooling (µ: left-invariant Haar measure):

Ax(u) =

∫

G
x(uv)h(v)dµ(v) =

∫

G
x(v)h(u−1v)dµ(v).

related work (Sifre and Mallat, 2013; Cohen and Welling, 2016; Raj et al., 2016)...
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Stability to deformations for convolutional NTK

Theorem (Stability of NTK (Bietti and Mairal, 2019b))

Let Φn(x) = ΦNTK (A0x), and assume ∥∇τ∥∞ ≤ 1/2

∥Φn(Lτx)− Φn(x)∥

≤
(
Cβn

7/4∥∇τ∥1/2∞ + C ′
βn

2∥∇τ∥∞ +
√
n + 1

C

σn
∥τ∥∞

)
∥x∥,
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Discretization and signal preservation: example in 1D

Discrete signal x̄k in ℓ2(Z, H̄k) vs continuous ones xk in L2(R,Hk).

x̄k : subsampling factor sk after pooling with scale σk ≈ sk :

x̄k [n] = ĀkM̄k P̄k x̄k–1[nsk ].

Claim: We can recover x̄k−1 from x̄k if factor sk ≤ patch size.

How? Recover patches with linear functions (contained in H̄k)

⟨fw , M̄k P̄k x̄k−1(u)⟩ = fw (P̄k x̄k−1(u)) = ⟨w , P̄k x̄k−1(u)⟩,

and
P̄k x̄k−1(u) =

∑

w∈B
⟨fw , M̄k P̄k x̄k−1(u)⟩w .

Warning: no claim that recovery is practical and/or stable.
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Discretization and signal preservation: example in 1D

x̄k−1

P̄kx̄k−1(u) ∈ Pk

M̄kP̄kx̄k−1

dot-product kernel

ĀkM̄kP̄kx̄k−1

linear pooling

downsampling

x̄k

recovery with linear measurements

Ākx̄k−1

deconvolution

x̄k−1
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RKHS of patch kernels Kk

Kk(z , z
′) = ∥z∥∥z ′∥κ

( ⟨z , z ′⟩
∥z∥∥z ′∥

)
, κ(u) =

∞∑

j=0

bju
j .

What does the RKHS contain?

RKHS contains homogeneous functions:

f : z 7→ ∥z∥σ(⟨g , z⟩/∥z∥).

Smooth activations: σ(u) =
∑∞

j=0 aju
j with aj ≥ 0.

Norm: ∥f ∥2Hk
≤ C 2

σ(∥g∥2) =
∑∞

j=0

a2j
bj
∥g∥2 <∞.

Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels Kk

Examples:

σ(u) = u (linear): C 2
σ(λ

2) = O(λ2).

σ(u) = up (polynomial): C 2
σ(λ

2) = O(λ2p).

σ ≈ sin, sigmoid, smooth ReLU: C 2
σ(λ

2) = O(ecλ
2
).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

f(x
)

f : x (x)
ReLU
sReLU

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

f(x
)

f : x |x| (wx/|x|)
ReLU, w=1
sReLU, w = 0
sReLU, w = 0.5
sReLU, w = 1
sReLU, w = 2
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Constructing a CNN in the RKHS HK
Some CNNs live in the RKHS: “linearization” principle

f (x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)) = ⟨f ,Φ(x)⟩H.

Consider a CNN with filters W ij
k (u), u ∈ Sk .

k: layer;
i : index of filter;
j : index of input channel.

“Smooth homogeneous” activations σ.

The CNN can be constructed hierarchically in HK.

Norm:

∥fσ∥2 ≤ ∥Wn+1∥22 C 2
σ(∥Wn∥22 C 2

σ(∥Wn–1∥22 C 2
σ(. . .))).

Linear layers: product of spectral norms.
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k : layer;
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j : index of input channel.
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Link with generalization

Direct application of classical generalization bounds

Simple bound on Rademacher complexity for linear/kernel methods:

FB = {f ∈ HK, ∥f ∥ ≤ B} =⇒ RadN(FB) ≤ O

(
BR√
N

)
.

Leads to margin bound O(∥f̂N∥R/γ
√
N) for a learned CNN f̂N with

margin (confidence) γ > 0.

Related to recent generalization bounds for neural networks based
on product of spectral norms (e.g., Bartlett et al., 2017;
Neyshabur et al., 2018).

(see, e.g., Boucheron et al., 2005; Shalev-Shwartz and Ben-David, 2014)...
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Deep convolutional representations: conclusions

Study of generic properties of signal representation

Deformation stability with small patches, adapted to resolution.

Signal preservation when subsampling ≤ patch size.

Group invariance by changing patch extraction and pooling.

Applies to learned models

Same quantity ∥f ∥ controls stability and generalization.

“higher capacity” is needed to discriminate small deformations.

Questions:

Better regularization?

How does SGD control capacity in CNNs?

What about networks with no pooling layers? ResNet?
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Outline

7 Open Problems and Research Topics
Multiple Kernel Learning (MKL)
Large-scale learning with kernels
Foundations of deep learning from a kernel point of view

Motivation
Deep kernel machines
Deep learning and stability
Application to graphs
Application to biological sequences
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Graph-structured data is everywhere

(a) molecules (b) protein regulation

(c) social networks (d) chemical pathways
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Learning graph representations

State-of-the-art models for representing graphs:

Deep learning for graphs: graph neural networks (GNNs);

Graph kernels: Weisfeiler-Lehman (WL) graph kernels;

Hybrid models attempt to bridge both worlds: graph neural
tangent kernels (GNTK).

Our model:

A new type of multilayer graph kernel: more expressive than WL
kernels;

Learning easy-to-regularize and scalable unsupervised graph
representations;

Learning supervised graph representations like GNNs.
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Graphs with node attributes

u

G = (V, E , a : V → R3)

a(u) = [0.3, 0.8, 0.5]

A graph is defined as a triplet (V, E , a);
V and E correspond to the set of vertices and edges;

a : V → Rd is a function assigning attributes to each node.
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Graph kernel mappings

The approach

1 Represent explicitly each graph x by a vector of fixed dimension
�(x) 2 Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

410 / 666

Map each graph G in X to a vector Φ(G ) in H, which lends itself to
learning tasks.

A large class of graph kernel mappings can be written in the form

Φ(G ) :=
∑

u∈V
φbase(ℓG (u)) where φbase embeds some local patterns ℓG (u) to H.

(Shervashidze et al., 2011; Lei et al., 2017; Kriege et al., 2019)
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2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

410 / 666

Map each graph G in X to a vector Φ(G ) in H, which lends itself to
learning tasks.

A large class of graph kernel mappings can be written in the form

K (G ,G ′) =
∑

u∈V

∑

u′∈V ′

κbase(ℓG (u), ℓG ′(u′)).
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Basic kernels: walk and path kernel mappingsWalks 6= paths

433 / 666

Path kernels are more expressive than walk kernels, but less
preferred for computational reasons.
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Basic kernels: walk and path kernel mappingsWalks 6= paths

433 / 666

Pk(G , u) := paths of length k from node u in G . The k-path
mapping is

φpath(u) :=
∑

p∈Pk (G ,u)

δa(p) =⇒ Φ(G ) =
∑

u∈V

∑

p∈Pk (G ,u)

δa(p).

a(p): concatenated attributes in p; δ: the Dirac function;

Φ(G ) can be interpreted as a histogram of paths occurrences;
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A relaxed path kernel

Walks 6= paths

433 / 666

φpath(u) =
∑

p∈Pk (G ,u)

δa(p)(·)

Issues of the path kernel mapping:

δ allows hard comparison between paths thus only works for discrete
attributes;

δ is not differentiable, which cannot be “optimized” with
back-propagation.
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A relaxed path kernel

Walks 6= paths

433 / 666

φpath(u) =
∑

p∈Pk (G ,u)

δa(p)(·)

=⇒
∑

p∈Pk (G ,u)

e−
α
2
∥a(p)−·∥2 .

Issues of the path kernel mapping:

δ allows hard comparison between paths thus only works for discrete
attributes;

δ is not differentiable, which cannot be “optimized” with
back-propagation.

Relax it with a “soft” and differentiable mapping

interpreted as the sum of Gaussians centered at each path from u.
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One-layer GCKN: a closer look at the relaxed path kernel

We define the one-layer GCKN as the relaxed path kernel mapping

φ1(u) :=
∑

p∈Pk (G ,u)

e−
α1
2
∥a(p)−·∥2 =

∑

p∈Pk (G ,u)

φRBF(a(p)) ∈ H1.

This formula can be divided into 3 steps:
path extraction: enumerating all Pk(G , u);
kernel mapping: evaluating Gaussian embedding φRBF of path
features;
path aggregation: aggregating the path embeddings.

We obtain a new graph with the same topology but different features

(V, E , a) φpath−−−→ (V, E , φ1).
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Construction of one-layer GCKN

u

a(u) ∈ Rd

(V , E , a : V → Rd)

path extraction

kernel mapping
path aggregation

u

u

ϕ1(u) ∈ H1

u u u

p1 p2 p3

ϕRBF(a(p1))
ϕRBF(a(p2))

ϕRBF(a(p3))

kernel mapping

H1

path aggregation

ϕ1(u) := ϕRBF(a(p1)) + ϕRBF(a(p2)) + ϕRBF(a(p3))

(V , E , ϕ1 : V → H1)
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From one-layer to multilayer GCKN

We can repeat applying φpath to the new graph

(V, E , a) φpath−−−→ (V, E , φ1)
φpath−−−→ (V, E , φ2)

φpath−−−→ . . .
φpath−−−→ (V, E , φj).

Final graph representation at layer j , Φ(G ) =
∑

u∈V φj(u).

Why is the multilayer model interesting ?

applying φpath once can capture paths: GCKN-path;
applying twice can capture subtrees: GCKN-subtree;
applying more times may capture higher-order structures?
Long paths cannot be enumerated due to computational complexity,
yet multilayer model can capture long-range substructures.
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Scalable approximation of Gaussian kernel mapping

φpath(u) =
∑

p∈Pk (G ,u)

φRBF(a(p)).

φRBF(a(p)) = e−
α
2
∥a(p)−·∥2 ∈ H is infinite-dimensional;

Nyström provides a finite-dimensional approximation Ψ(a(p)) by
orthogonally projecting φRBF(a(p)) onto some finite-dimensional
subspace:

Span(φRBF(z1), . . . , φRBF(zq)) parametrized by Z = {z1, . . . , zq},

where zj ∈ Rdk can be interpreted as path features.

The parameters Z can be learned by

(unsupervised) K-means on the set of path features;
(supervised) end-to-end learning with back-propagation.

(Chen et al., 2019a,b; Williams and Seeger, 2001)
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Comparison of GCKN and GNN

GCKN vs. GNN

fGCKN(G ) =
∑

u∈G
ψk(u) fGNN(G ) =

∑

u∈G
fk(u)

ψk(u) =
∑

p∈Pk (G ,u)

κ(Z⊤Z )−
1
2κ(Z⊤ψk−1(p)) fk(u) =

∑

v∈N (u)

ReLU(Z⊤fk−1(v))

local path aggregation neighborhood aggregation

projection in a known RKHS ?

supervised and unsupervised supervised
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Experiments on graphs with discrete attributes

MUTAG

PROTEINS

PTC

NCI1IMDB-B

IMDB-M

COLLAB

-10

0

10
12

WL subtree
GNTK
GCN
GIN
GCKN-path-unsup
GCKN-subtree-unsup
GCKN-subtree-sup

Accuracy improvement
with respect to the WL
subtree kernel.

GCKN-path already
outperforms the
baselines.

Increasing number of
layers brings larger
improvement.

Supervised learning does
not improve
performance, but leads
to more compact
representations.

(Shervashidze et al., 2011; Du et al., 2019; Xu et al., 2019; Kipf and Welling, 2017)
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Experiments on graphs with continuous attributes
ENZYMES

PROTEINS

BZR

COX2 -5

0

5

WWL
GNTK
GCKN-path-unsup
GCKN-subtree-unsup
GCKN-subtree-sup

Accuracy improvement
with respect to the
WWL kernel.

Results similar to
discrete case.

Path features seem
presumably predictive
enough.

(Du et al., 2019; Togninalli et al., 2019)
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Model interpretation for Mutagenicity prediction

Idea: find the minimal connected component that preserves the
prediction.

GCKN

Original

(Ying et al., 2019)
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Outline

7 Open Problems and Research Topics
Multiple Kernel Learning (MKL)
Large-scale learning with kernels
Foundations of deep learning from a kernel point of view

Motivation
Deep kernel machines
Deep learning and stability
Application to graphs
Application to biological sequences
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Sequence modeling as a supervised learning problem

Biological sequences x1, . . . xn ∈ X and their associated labels
y1, . . . , yn.

Goal: learning a predictive and interpretable function f : X → R

min
f ∈F

1

n

n∑

i=1

L(yi , f (xi ))

︸ ︷︷ ︸
empirical risk, data fit

+ µΩ(f )︸ ︷︷ ︸
regularization

.

How do we define the functional space F?
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String kernels

A classical approach for modeling biological sequences over alphabet A
relies on string kernels.

K (x , x ′) =
∑

u∈Ak

δu(x)δu(x
′)

= ⟨Φ(x),Φ(x ′)⟩

,

where u is a k-mer over an alphabet A and δu(x) can be:

the number of occurrences of u in x: spectrum kernel (Leslie et al.,
2002);

the number of occurrences of u in x up to m mismatches:
mismatch kernel (Leslie and Kuang, 2004);

the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lodhi et al., 2002).

What is Φ(x)?

It can be interpreted as a histogram of pattern occurences.
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δu(x)δu(x
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where u is a k-mer over an alphabet A and δu(x) can be:

the number of occurrences of u in x: spectrum kernel (Leslie et al.,
2002);

the number of occurrences of u in x up to m mismatches:
mismatch kernel (Leslie and Kuang, 2004);

the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lodhi et al., 2002).

What is Φ(x)?

It can be interpreted as a histogram of pattern occurences.
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Convolutional kernel networks for sequence modeling

Define a continuous relaxation of the mismatch kernel (Chen et al.,

2019a; Morrow et al., 2017)

KCKN(x, x
′) =

|x|−k+1∑

i=1

|x′|−k+1∑

j=1

K0( x[i :i+k]︸ ︷︷ ︸
one k-mer

, x′[j :j+k]).

Use one-hot encoding

x[i :i+5] := TTGAG 7→
A
T
C
G




0 0 0 1 0
1 1 0 0 0
0 0 0 0 0
0 0 1 0 1


 .

K0 is a Gaussian kernel over one-hot representations of k-mers (in
Rk×d).
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Convolutional kernel networks for sequence modeling

Define a continuous relaxation of the mismatch kernel (Chen et al.,

2019a; Morrow et al., 2017)

KCKN(x, x
′) =

〈|x|−k+1∑

i=1

φ0(x[i :i+k])

︸ ︷︷ ︸
Φ(x)

,

|x′|−k+1∑

j=1

φ0(x
′
[j :j+k])

︸ ︷︷ ︸
Φ(x ′)

〉
.

Use one-hot encoding

x[i :i+5] := TTGAG 7→
A
T
C
G




0 0 0 1 0
1 1 0 0 0
0 0 0 0 0
0 0 1 0 1


 .

K0 is a Gaussian kernel over one-hot representations of k-mers (in
Rk×d).

757 / 785



Scalable Approximation of Kernel Mapping (with more
details this time)

K0(u, u
′) = ⟨φ0(u), φ0(u

′)⟩H0 ≈ ⟨ψ0(u), ψ0(u
′)⟩Rq .

Nyström provides a finite-dimensional approximation ψ0(u) in Rq

by orthogonally projecting φ0(u) onto some finite-dimensional
subspace:

E0 = Span(φ0(z1), . . . , φ0(zq)) parametrized by Z = {z1, . . . , zq}.

Hilbert space H0

E0

ϕ0(u)

ϕ0(u
′)

Case of dot-product kernels K0(u, u
′) = κ(⟨u, u′⟩):

ψ0(u) = κ(Z⊤Z )−1/2κ(Z⊤u).

linear operation - pointwise nonlinearity - linear operation (subject
to interpretation)

Ex: κ(β) = eβ−1, polynomial, inverse polynomial, arc-cosine
kernels....
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Single-Layer CKN for sequence modeling

x ∈ X
x(u) ∈ APi(x) k-mer

ψ0(Pi(x)) ∈ Rq

kernel mapping approximation

ψ0(Pi(x)) = K
− 1

2

ZZKZ(Pi(x))

global pooling

Ψ(x) ∈ Rq y
prediction layer

〈w,Ψ(x)〉
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Multilayer CKN for sequence modeling

x : Ω→ A
x(u) ∈ A P0x(v1) ∈ P0 (patch)

x0 : Ω0 → H0

x0(v1) = ϕ0(P0x(v1)) ∈ H0

domain-specific kernel
P1x0(v2) ∈ P1

x0.5 : Ω0 → H1

x0.5(v2) = ϕ1(P1x0(v2)) ∈ H1

dot-product kernel

x1 : Ω1 → H1

x1(v3) ∈ H1

linear pooling

xk ∈ Hk y
prediction layer

embedding
layer

convolutional
kernel layer
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From k-mers to gapped k-mers

k-mers with gaps

For a sequence x = x1 . . . xn ∈ X of length n and a sequence of
ordered indices ı = (i1, . . . , ik) in I(k, n), we define a k-substring as:

x[ı] = xi1xi2 . . . xik .

We introduce the quantity

gaps(ı) = number of gaps in index sequence.

Example: x = ABRACADABRA

ı = (4, 5, 8, 9, 11) x[ı] = RADAR gaps(ı) = 3.
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Recurrent kernel networks

Comparing all the k-mers between a pair of sequences (single layer
models)

KCKN(x, x
′) =

|x|−k+1∑

i=1

|x′|−k+1∑

j=1

K0

(
x[i :i+k], x

′
[j :j+k]

)
.

The kernel mapping is Φ(x) =
∑|x |−k+1

i=1 φ0(x[i :i+k]).

This is a differentiable relaxation of the substring kernel.
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Recurrent kernel networks

Comparing all the gapped k-mers between a pair of sequences
(single layer models)

KRKN(x, x
′) =

∑

ı∈I(k,|x|)

∑

ȷ∈I(k,|x′|)

λgaps(ı)λgaps(ȷ)K0

(
x[ı], x

′
[ȷ]

)
.

The kernel mapping is Φ(x) =
∑

ı∈I(k,|x|) λ
gaps(ı)φ0(x[ı]).

This is a differentiable relaxation of the substring kernel.

But enumerating all possible substrings is costly...
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Approximation and recursive computation of RKN

Approximate feature map of RKN kernel

The approximate feature map of KRKN via Nyström approximation is

Ψ(x) =
∑

ı∈I(k,t)

λgaps(ı)ψ0(x[ı]) ∈ Rq,

where, as usual with a dot-product kernel,
ψ0(x[ı]) = κ(Z⊤Z )−1/2κ(Z⊤x[ı]).

The sum can be computed by using dynamic programming (Lodhi
et al., 2002),

which leads to a particular recurrent neural network (see Lei et al.,
2017).
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A feature map for the single-layer RKN

When K0 is a Gaussian kernel, the feature map of RKN is a mixture of
Gaussians centered at x[ı], weighted by the corresponding penalization

λgaps(ı).

k-mer kernel embedding

one 4-mer of x

i1 i2 λ i3 λ i4

xi

i1 i2 i3 i4

λ2ϕ0(x[i])

one-layer RKN

x

i1 i2 λ i3 λ ik

all embedded
k-mers

λgap(i)ϕ0(x[i])

pooling

∑
i λ

gap(i)ϕ0(x[i])

Figure: Example of KRKN for k = 4
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Results

Protein fold classification on SCOP 2.06 (Hou et al., 2017) (using
more informative sequence features including PSSM, secondary
structure and solvent accessibility)

Method ♯Params Accuracy Level-stratified accuracy (top1/top5)
top 1 top 5 family superfamily fold

PSI-BLAST - 84.53 86.48 82.20/84.50 86.90/88.40 18.90/35.100
DeepSF 920k 73.00 90.25 75.87/91.77 72.23/90.08 51.35/67.57
CKN (128 filters) 211k 76.30 92.17 83.30/94.22 74.03/91.83 43.78/67.03
CKN (512 filters) 843k 84.11 94.29 90.24/95.77 82.33/94.20 45.41/69.19

RKN (128 filters) 211k 77.82 92.89 76.91/93.13 78.56/92.98 60.54/83.78
RKN (512 filters) 843k 85.29 94.95 84.31/94.80 85.99/95.22 71.35/84.86

Note: More experiments with statistical tests have been conducted in
our paper.

(Hou et al., 2017; Chen et al., 2019a)
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Logos, by finding pre-image of each filter
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Results

Protein fold recognition on SCOP 1.67 (widely used in the past)

Method pooling one-hot BLOSUM62
auROC auROC50 auROC auROC50

SVM-pairwise 0.724 0.359
Mismatch 0.814 0.467
LA-kernel – – 0.834 0.504
LSTM 0.830 0.566 – –
CKN 0.837 0.572 0.866 0.621

RKN mean 0.829 0.541 0.840 0.571
RKN max 0.844 0.587 0.871 0.629
RKN (unsup) mean 0.805 0.504 0.833 0.570

(Liao and Noble, 2003; Leslie et al., 2003; Vert et al., 2004b; Hochreiter et al., 2007;

Chen et al., 2019a)
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Conclusion of the course
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What we saw

Basic definitions of p.d. kernels and RKHS

How to use RKHS in machine learning

The importance of the choice of kernels, and how to include “prior
knowledge” there.

Several approaches for kernel design (there are many!)

Review of kernels for strings and on graphs

Recent research topics about kernel methods

769 / 785



What we did not see

How to automatize the process of kernel design (kernel selection?
kernel optimization?)

How to deal with non p.d. kernels

Bayesian view of kernel methods, called Gaussian processes.
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J. Ramon and T. Gärtner. Expressivity versus efficiency of graph kernels. In T. Washio and
L. De Raedt, editors, Proceedings of the First International Workshop on Mining Graphs,
Trees and Sequences, pages 65–74, 2003.

F. Rapaport, A. Zynoviev, M. Dutreix, E. Barillot, and J.-P. Vert. Classification of microarray
data using gene networks. BMC Bioinformatics, 8:35, 2007. doi: 10.1186/1471-2105-8-35.
URL http://dx.doi.org/10.1186/1471-2105-8-35.

H. Saigo, J.-P. Vert, N. Ueda, and T. Akutsu. Protein homology detection using string
alignment kernels. Bioinformatics, 20(11):1682–1689, 2004. URL
http://bioinformatics.oupjournals.org/cgi/content/abstract/20/11/1682.

M. Schmidt, N. L. Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. Mathematical Programming, 2016.

I. Schoenberg. Positive definite functions on spheres. Duke Math. J., 1942.

B. Scholkopf. Support Vector Learning. PhD thesis, Technischen Universität Berlin, 1997.

B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, 2002. URL
http://www.learning-with-kernels.org.

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

B. Schölkopf, K. Tsuda, and J.-P. Vert. Kernel Methods in Computational Biology. MIT
Press, The MIT Press, Cambridge, Massachussetts, 2004.

781 / 785

http://dx.doi.org/10.1186/1471-2105-8-35
http://bioinformatics.oupjournals.org/cgi/content/abstract/20/11/1682
http://www.learning-with-kernels.org


References XII

M. Seeger. Covariance Kernels from Bayesian Generative Models. In Adv. Neural Inform.
Process. Syst., volume 14, pages 905–912, 2002.

S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization. Mathematical Programming, 2015.

V. Shankar, A. Fang, W. Guo, S. Fridovich-Keil, L. Schmidt, J. Ragan-Kelley, and B. Recht.
Neural kernels without tangents. preprint arXiv:2003.02237, 2020.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, New York, NY, USA, 2004a.

J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cambridge University
Press, 2004b.

N. Shervashidze and K. M. Borgwardt. Fast subtree kernels on graphs. In Advances in Neural
Information Processing Systems, pages 1660–1668, 2009.

N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt. Efficient
graphlet kernels for large graph comparison. In 12th International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 488–495, Clearwater Beach, Florida USA,
2009. Society for Artificial Intelligence and Statistics.

782 / 785



References XIII

N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M. Borgwardt.
Weisfeiler-lehman graph kernels. The Journal of Machine Learning Research, 12:
2539–2561, 2011.

L. Sifre and S. Mallat. Rotation, scaling and deformation invariant scattering for texture
discrimination. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), 2013.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. 2014.

T. Smith and M. Waterman. Identification of common molecular subsequences. J. Mol. Biol.,
147:195–197, 1981.

A. J. J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine learning. In
Proceedings of the International Conference on Machine Learning (ICML), pages 911–918,
San Fransisco, CA, USA, 2000. Morgan Kaufman.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.
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